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XPro: a Model to Explain the Limited Adoption
and Implementation of Experimentation in

Software Startups
Jorge Melegati, Henry Edison, and Xiaofeng Wang

Abstract—Software startups develop innovative, software-intensive products or services. Such innovativeness translates into
uncertainty regarding a matching need for a product from potential customers, representing a possible determinant reason for startup
failure. Research has shown that experimentation, an approach based on the use of experiments to guide several aspects of software
development, could improve these companies’ success rate by fostering the evaluation of assumptions about customers’ needs before
developing a full-fledged product. Nevertheless, software startups are not using experimentation as expected. In this study, we
investigated the reasons behind such a mismatch between theory and practice. To achieve it, we performed a qualitative survey study
of 106 failed software startups. We built the eXperimentation Progression model (XPro), demonstrating that the effective adoption and
implementation of experimentation is a staged process: first, teams should be aware of experimentation, then they need to develop an
intention to experiment, perform the experiments, analyze the results, and finally act based on the obtained learning. Based on the
XPro model, we further identified 25 inhibitors that prevent a team from progressing along the stages properly. Our findings inform
researchers of how to develop practices and techniques to improve experimentation adoption in software startups. Practitioners could
learn various factors that could lead to their startup failure so they could take action to avoid them.

Index Terms—software startups, experimentation, experiment-driven software development, startups
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1 INTRODUCTION

IN the last 20 years, innovative software-intensive prod-
ucts changed many aspects of our lives. For instance,

nowadays, people move around in many cities worldwide
using ride-sharing apps like Uber or Lyft rather than taxi
services. We are getting used to booking accommodations
for our vacations or business trips through Airbnb rather
than on hotel websites. Our daily communication tools
are Whatsapp, Twitter, and Zoom instead of phone calls
or even emails. These software products, disrupting long-
standing traditional industries, are generally created by new
and emerging companies, the so-called software startups.
These organizations develop innovative software-intensive
products or services and search for repeatable and scalable
business models [1]. This quest for a viable business model
along with the liability of newness leads to higher uncer-
tainties than in established companies [2]. It is essential to
emphasize that the startup is a temporary stage leading to a
consolidated company or the activities’ end. Despite many
successful cases as those mentioned above, more than 90%
of software startups fail to become durable and profitable
businesses [3]. There are various potential reasons for fail-
ure, including demanding market conditions, lack of team
commitment, and financial issues [4] but wrong business
development is one key determinant [5].

In the entrepreneurship literature, a recognized crucial
element for business development is experimentation [6],
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represented by several “trials and errors” along various
dimensions of a business model [7]. In the software startup
context, experiments, such as problem or solution inter-
views and prototype testing, could help startup teams eval-
uate if software products are worth building, whether they
attract and retain customers and users, etc. With evaluation
results, teams could make more informed decisions and
avoid investing their limited resources on a flawed busi-
ness idea. In this context, the software development focus
shifts from developing features following determined re-
quirements to creating experiments informing requirements
definition or implemented features evaluation.

Experimentation resonates among practitioners, as evi-
denced by the Lean Startup methodology success [8]. The
approach claims that, instead of developing a product with-
out contacting customers, a startup should treat its business
idea as hypotheses, build minimum viable products that
allow the team to test the hypotheses, and, based on the
data collected, persevere on the idea or pivot. The company
should repeat these so-called Build-Measure-Learn cycles
until it reaches a repeatable and scalable business model.
The Lean Startup is mainly based on anecdotal evidence,
but several researchers argued that experimentation is an
essential element of the methodology [9], [10], [11].

Despite the Lean Startup popularity (evident from the
number of book copies sold1), and the support of cloud
services making experiments cheaper [12], adoption and
implementation of experimentation in software startups
as a way of searching repeatable and scalable business

1. https://www.forbes.com/sites/danschawbel/2017/10/17/eric-
ries-why-companies-need-to-create-an-entrepreneurial-culture/
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models are limited. Most of these companies still focus on
developing complete products or services based on their
original ideas instead of experimenting [13], [14], [15]. The
literature offers a scarce explanation of why the adoption
of experimentation is still limited in software development
teams. However, the aspects described above bring to the
attention why this fact also happens in software startups.
The goal of this study is to understand this phenomenon
better. Viewing experimentation as a process innovation, a
large body of research useful to understand such a problem
is the diffusion of innovations since it is targeted at the
adoption and implementation of a new technology [16].
Using these concepts, we formulated the following research
question to guided this study:

RQ: Why do software startups fail to adopt and

implement an experimentation approach?

A commonality across different models of diffusion
and adoption of innovations is their staged nature. Sem-
inal works such as the Technology Acceptance Model
(TAM) [17], or Cooper and Zmud’s technology implemen-
tation model [18] have theorized the steps of adoption and
implementation of an innovation. Such a linear process is
a simplification of a complex reality. Nevertheless, it allows
researchers and practitioners to better understand and act
on the process. Therefore, it is reasonable and valuable that,
in our study, we took a staged view on the adoption and
implementation of experimentation in software startups.
Consequently, the first sub-question for our study is:

RQ1: What are the stages of the adoption and

implementation process of experimentation in software

startups?

Given the final goal of improving the adoption of ex-
perimentation in software startups, it is valuable to under-
stand what prevents these companies from reaching more
advanced stages in the adoption process. These inhibitors
should be handled to reach the final goal. Therefore, the
second sub-questions for this study is:

RQ2: What are the inhibitors that prevent software

startups from progressing along the stages of adopting

and implementing experimentation?

To answer these research questions, we performed a
qualitative survey study based on the postmortems of 106
failed startups collected from CBInsights2. We analyzed the
data using thematic synthesis and built the eXperimentation
Progression (XPro) model to explain experimentation adop-
tion and implementation in software startups. It presents the
process consisted of a series of steps that, ideally, a software
startup team should follow to implement experimentation
properly: after having an idea, a software startup team
may be aware of experimentation, develop the intention to
experiment, then perform one or more experiments, analyze
the results, and finally, act upon the conclusions obtained.
However, a team may not progress from one step to the
next or may perform wrong activities in a step. Based on
the stages, we identified 25 inhibitors acting on the different

2. Available at https://www.cbinsights.com/research/startup-
failure-post-mortem/

stages that prevent teams from progressing and implement-
ing experimentation to validate their business models.

The remaining of this paper is organized as follows:
Section 2 introduces the background literature for our study.
Section 3 summarizes the related work. Section 4 presents
the research methodology applied in this study and Sec-
tion 5 the results obtained. In Section 6, we discuss the re-
sults, comparing them with the literature. Finally, Section 7
concludes the paper and presents possible future work.

2 BACKGROUND

In this section, we describe the core concepts of our study.
First, Section 2.1 discusses what a software startup is and
Section 2.2, what experimentation is in the context of soft-
ware engineering. Then, Section 2.3 displays the importance
of experimentation to software startups given their inno-
vative nature. Since experimentation can be viewed as a
process innovation, Section 2.4 presents the concept of in-
novation diffusion applied to software process innovations.

2.1 Software startups
Despite a growing scientific interest in the topic, there is still
no consensus on the definition of “software startup” [19].
In a systematic mapping study (SMS) on the topic, Berg et
al. [19] compared the terms used to describe these compa-
nies in the scientific papers. They observed that in those
studies published during the 2013 to 2017 period, there were
no agreed-upon concepts used by the papers to characterize
startups, and the themes most used were innovation, un-
certainty, and small team. In a 2016 research agenda paper,
Unterkalmsteiner et al. [1] stated that software startups “de-
velop innovative software-intensive products under time
constraints and with a lack of resources, and constantly
search for sustainable and scalable business models.”

Based on the reviewed definitions, it is evident that the
innovation concept is essential to characterize a software
startup. The term innovation also has “different defini-
tions, classifications and/or types of innovations at the
firm level” [20]. In a seminal work, Garcia and Calan-
tone [21] reviewed the marketing, engineering, and new
product development literature and described the term
“product innovativeness” to measure the “newness” de-
gree of an innovation. The authors argued that such an
aspect represents a discontinuity in the status quo regard-
ing marketing, technological, or both aspects. Here, the
marketing perspective refers to the newness of a product
to the market. More recently, Purchase et al. [22] used
a similar classification: technical, commercialization, and
ambidextrous. Based on Garcia and Calantone’s product
innovativeness concept, Melegati and Wang [23] analyzed
the papers covered by Berg et al.’s SMS. They classified the
startups studied according to the nature of their innovation
(technological and/or marketing). They concluded that the
Software Engineering literature did not differentiate these
two types of innovation, but there is a prevalence of the
studied software startup companies which innovate from
the marketing perspective. That is, these companies use
consolidated technologies, like Web development or mobile
apps, to create novel products. The authors acknowledged
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the difficulty in reaching a consensus on the definition, thus
urged future studies to clearly state their understanding
of software startup and clearly describe the studied cases
allowing readers to interpret the results better.

Another common aspect of software startups reported
in the literature is its transitory aspect; that is, a startup is
a temporary stage of a new organization towards creating a
new sustainable business. In one of the first scientific papers
on the topic, Crowne [24] proposed a model consisted of
three phases: startup, stabilization, and growth. Klotins et
al. [25] built an improved and more detailed version with
the following phases: inception, stabilization, growth, and
maturity. In the first phase, a startup’s goal is to develop the
first version of the product; in the stabilization phase, based
on customers’ input, the product is developed further and
prepared to scale; in the growth stage, the goal is to achieve
the desired market share and; finally, in the last phase, the
startup transitions into an established organization. This
temporal limitation idea is also present in Steve Blank’s
definition. According to the author, a startup is “a tempo-
rary organization designed to search for a repeatable and
scalable business model” [26]. This pursuit for a business
model, along with the liability of newness, is a fundamental
difference to established companies [2].

Along these lines, we use the following definition
throughout the paper: software startups are organizations
looking for a repeatable and scalable business model for an
innovative product or service they develop where software
represents a core element. In this regard, repeatability is
often associated with desirability (if customers want that
product), feasibility (if it is functionally possible), and via-
bility (if it is sustainable concerning the costs of building
it and the revenue from offering it to the market) [27].
Meanwhile, a scalable business model is flexible, and the
use of more resources leads to increasing returns [28].

It is worth emphasizing that software startups are not
stand-alone entities. They operate in highly dynamic busi-
ness ecosystems composed of other startups, established
companies, competitors, incubators/accelerators, govern-
ments, etc. [29]. Therefore software startups are frequently
under multiple influences, which increases the uncertainty
they face. This aspect is one of the defining characteristics
of software startups [30].

2.2 Experimentation
Experimentation is an overloaded term with several mean-
ings in different or even in the same research field. In the
Innovation and Entrepreneurship disciplines, experimenta-
tion is described as “a form of problem-solving” [31] based
on trials and errors [31], [32]. In Software Engineering, the
term was first used to enforce empirical methods in scientific
studies, as seen in books by Wohlin et al. [33] and Juristo et
al. [34].

More recently, the term has been used to describe differ-
ent techniques ranging from prototypes in startups to con-
trolled experimentation [35] as well as problem or solution
interviews [36]. In this sense, a commonly used variant is
“continuous experimentation” to stress the constant use of
experiments (e.g., [37]) related to the concept of continuous
software engineering [38]. Other term variants stress the

link with software like experiment-driven software devel-
opment [39] and outcome/data-driven development [40].

In our study, we adopted the definition of experimenta-
tion as an approach characterized by continuously identi-
fying critical product assumptions, transforming them into
hypotheses, prioritizing, and testing them with experiments
following the scientific method in order to support or refute
the hypotheses [36]. It is essential to highlight, though, that
the concept is diverse from the scientific meaning of experi-
ment referring to a broader sense of data-driven rather than
opinion-based decision making [36], [41] with the goal to
make well-founded decisions and reduce the risk.

2.3 Experimentation in Software Startups
In the context of software startups, experimentation is
linked naturally to the innovative nature of these compa-
nies, as its purpose is to validate that the company is able to
create a repeatable and sustainable business model based
on its innovative product/service. The innovative nature
brings higher uncertainty to startup development, and ex-
perimentation is a way to tackle the uncertainty. Research
shows that experimentation could lead to more efficient use
of human and financial resources in uncertain and inno-
vative endeavors. For instance, Thomke [42] argued that
“no product can be a product without having first been an
idea that was shaped, to one degree or another, through the
process of experimentation.” According to Andries et al. [7],
“simultaneous experimentation implies lower initial growth
levels, but facilitates long-term survival by enacting variety
in a resource-effective manner.” Lynn et al. [43] proposed a
model for fast team learning in new product development,
including the use of experiments, tested it with 171 teams
and concluded that these teams launched products quicker
and with an increased probability of success. In an attempt
to provide scientific ground to the Lean Startup approach,
Frederiksen and Brem [9] argued that the methodology
had a “clear and explicit emphasis on experimentation
over long-term planning.” In summary, such an approach
would help founders understand better potential customers
and the market they want to operate in without spending
unnecessary time and resources to develop a full-fledged
product.

Two factors explain why experimentation is particularly
suitable in software startups compared with startups cre-
ating non-software innovation: cost and compatibility with
current practices.

First, software plays a prominent role in these compa-
nies, and its development has a lower cost compared to
other sectors such as hardware building or biotechnology.
Software startups can build products in shorter periods
and at lower costs. Therefore, creating software prototypes
for experimentation is fast and cheap, so is modifying
software products as responses to experimentation results.
This advantage is even more substantial with the advent of
cloud solutions that made it easier and cheaper to perform
experiments [12]. For instance, cloud platforms allow web-
sites to be deployed with few clicks rather than software
startups handling their own infrastructures or renting space
in physical data centers.

Second, experimentation is closely related to the idea
of frequent customer feedback that is strongly advocated
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in agile methodologies [44]. Since agile practices are well-
known among software developer teams, it is reasonable
to expect that software startups are keener to adopt exper-
imentation compared to companies in other segments that
demand stricter development processes.

Different experimentation techniques are expected to
be used in distinct stages of a startup. Fabijan et al. [45]
grouped feedback techniques according to product devel-
opment stages: pre-development, development, and post-
development. For the first stage, examples of experimen-
tation are interviews, observations, surveys, or online ads;
for the second, prototype testing, operational data, and
developers as customers; and finally, in the third stage,
A/B testing or social network data. Since it is possible to
map the product development stages to the software startup
stages mentioned above [46], the experiments suitable for
one product development stage can be applied in the corre-
sponding startup stage. For instance, in the inception stage,
experiments are those from the pre-development stages,
such as interviews or surveys. In this study, we mainly
focus on experiments that could help a startup reach its final
goal: find a viable business model for an innovative product.
These experiments should evaluate key assumptions made
on the business model, e.g., customers’ willingness to use
the product, usefulness of proposed features to targeted
customer segments, solution’s technical feasibility, team’s
capability to develop or distribute the solution, or its de-
pendency on external partners from the startup ecosystem.

2.4 Software process innovation diffusion

Since “an innovation is any idea, practice or object that
is perceived as new by the adopter” [47], experimentation
can be viewed as a novel approach to develop an innova-
tive software-intensive product or service based on experi-
ments [36], [40], [48] rather than building the whole solution
based on a pre-defined plan without validating the assump-
tions. Therefore, experimentation usage in software startups
can be regarded as an innovation adoption phenomenon. A
seminal model in this regard is Rogers’ theory of diffusion
of innovations [47]. Within the theory, the author described
an innovation-decision process consisted of five stages. The
first one, knowledge, occurs when a decision-making unit
is exposed to the innovation. Persuasion happens when the
decision-making unit develops an opinion about the innova-
tion, either positive or negative; then, a decision is made to
adopt it or not. Implementation occurs when the artifact is
put into use. In the confirmation stage, an individual “seeks
reinforcement of an innovation-decision already made, but
he or she may reverse this previous decision.”

Fichman [16] differentiated between individual and or-
ganizational adoption of an innovation and reviewed adap-
tations needed to the theories developed for the individual
adoption to be extended to the organizational level. Regard-
ing organizational adoption, a seminal model in the context
of information systems (IS) is proposed by Cooper and
Zmud [18]. According to the authors, the process consisted
of six stages: initiation, adoption, adaptation, acceptance,
routinization, and infusion. In initiation, the need for a
change is identified, and a suitable innovation is found.
Then, in the next step, a decision is made to adopt or not the

innovation. In adaptation, it is adapted to the organization’s
context needs; in acceptance, the organization’s members
start to use the innovation; in routinization, its use becomes
a regular activity. Finally, in the infusion stage, the usage in-
creases in a comprehensive manner leading to better results.
One way to split these stages is in adoptive behavior (initia-
tion, adoption, and adaptation) and post-adoptive behavior
(acceptance, routinization, and infusion) [49].

An aspect that has raised a particular interest in IS re-
search has been technology adoption. In this regard, a semi-
nal work is the Technology Adoption Model (TAM) [17]. Ac-
cording to the model, the intention to use a new technology
is influenced by the perceived usefulness and its perceived
ease of use. The intention to use then can or cannot lead to
usage. In an extension of the model, Venkatesh et al. [50]
concluded that this transition from intention to use to final
use is influenced by subjective norm, image, job relevance,
output quality, and result demonstrability.

3 RELATED WORK

In the Software Engineering literature, several studies fo-
cused on or touched upon the adoption and implementation
of experimentation in the development process. Few stud-
ies, though, treated this problem in the context of software
startups. In this section, we review these studies showing
the gap our study aims to fulfill.

First, several studies focused on how software de-
velopment teams or companies employ experimentation.
Bosch [41] investigated how a large company used exper-
iments in product development. The author observed three
main characteristics: a frequent deployment of new software
versions, the central role of usage data in the development
process, and the focus on innovation and idea testing to
improve customer satisfaction and revenue. Several other
authors proposed models to describe how this process is
or should be performed. Olsson and Bosch introduced both
the HYPEX (Hypothesis Experiment Data-Driven Develop-
ment) [51] and QCD (Qualitative/quantitative Customer-
driven Development) [52]. Fagerholm et al. [48] proposed
the RIGHT model (Rapid Iterative value creation Gained
through High-frequency Testing). A common ground of all
these models is a process consisted of identifying hypothe-
ses regarding the product, designing experiments, executing
them, analyzing the results obtained, and based on that,
derive learning that updates the hypotheses [53].

Second, other authors investigated the current status of
experimentation in software development and discussed
why these teams do not use it more often. Ros et al. [54] per-
formed a systematic mapping study on continuous experi-
mentation that included 62 scientific papers. The authors
identified ten research topics and, according to their analy-
sis, only three of them are supported by some empirical ev-
idence: experiment process, infrastructure, and challenges.
The first topic, experiment process, relates to processes used
to perform experimentation as described previously. The
second topic, infrastructure, partially overlaps with the pre-
vious one since it discusses “system and software architec-
ture, roles required, and organizational culture” necessary
to conduct experiments. Finally, challenges are the most
frequent topic among the surveyed studies. The authors
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classified them in four types: technical, e.g., enabling contin-
uous deployment to do experiments online or offline easily;
statistical, regarding difficulties while employing statistical
methods; management and organizational, such as adopting
experiments; and business, such as prioritization and lack
of users. Lindgren and Münch [36] explored the state of the
practice of experimentation in the software industry. The au-
thors performed a qualitative survey with ten Finnish com-
panies consisted of thirteen interviews. According to them,
the most significant result was that the biggest challenges
to its use reside in the categories, including organizational
culture, product management, and resourcing, rather than
in the supporting technology. In summary, several aspects
have been identified so far that prevent the adoption and im-
plementation of experimentation in software development.

Nevertheless, in the context of software startups, the
number of studies is more limited. Pantiuchina et al. [15]
reported a broad survey of 1526 software startups to under-
stand the use of agile practices in this context, including a
comparison between those that applied Lean Startup and
those that did not. To distinguish these two types, the
authors considered teams that used “the key Lean Star-
tups concepts”: hypothesis-driven, minimum viable product
(MVP), and pivot. According to these criteria, only 226, 15%
of the total, were considered to use Lean Startup. Neverthe-
less, the authors concluded that these software startups tend
to use agile practices more often than the rest of the sample.

Gutbrod et al. [13] performed a multiple-case study
in four German software startups that had not reached
product-market fit to understand the use of experimentation
in this context, the challenges these companies face, and the
benefits they observe. The authors concluded that startups
spend much time developing their solutions without testing
their assumptions, and the main reasons for that are the lack
of awareness of the possibility of early testing and the lack
of knowledge and support on how to identify, prioritize,
and test hypotheses.

Melegati et al. [46] investigated the enablers and in-
hibitors of experimentation in early-stage software startups.
To achieve this, they performed a multiple-case study in
four companies (three Italian and one Brazilian). They iden-
tified twelve themes grouped in the categories of individual,
organizational context, and environmental factors.

On the individual level, the identified enablers were
the founders’ previous experience with startups and agile
methodologies. Generally, if founders have founded another
startup before the current one, they were aware that doing
everything upfront did not work. Regarding agile method-
ologies, since these practices foster iterative development,
practitioners considered that a similar approach would be
valuable to business development. On the other hand, it was
common for founders to be in love with their idea and have
not considered experimenting as relevant. Besides that, they
misunderstood concepts like MVP, viewing it as a prototype
instead of an artifact to test a hypothesis. Such confusion
led them to prepare an initial version of the final features
instead of creating artifacts to test their ideas.

On the organizational level, the authors grouped the
factors related to the startups, its internal and surrounding
dynamics, such as its business model, practices, and tools
used. The flexibility and support for experiments from soft-

ware platforms were enablers, and the lack of them acted
as an inhibitor. Other inhibitors in this category were the
lack of resources to run experiments, a small number of
users to do controlled experiments, and fear of losing clients,
especially regarding B2B products.

On the environmental level, the identified enablers were
the presence of accelerators and incubators or courses on
the topic taught by local universities. These elements made
knowledge about experimentation and practices based on
it, like Lean Startup, available to startup founders and early
employees. They also observed that some mentors work-
ing on accelerators and incubators came from traditional
businesses and were not aware of experimentation practices.
Besides that, the difficulty of getting capital was an inhibitor.

Although previous studies have reached important re-
sults, the research on the limited usage of experimentation
in software startups is still in paucity. The studies focused on
a deep understanding of a small number of cases restricted
to specific geographical locations and business domains.
Also, the results focused on listing enablers and inhibitors,
not aiming to propose a comprehensive understanding of
the adoption and implementation of experimentation.

Regarding diffusion and adoption of software process
innovations, there are some studies in the literature. On
an individual level, Riemenschneider et al. [55] tested con-
structs from five different models of technology adoption
(Technology Acceptance Model (TAM), TAM2, Perceived
Characteristics of Innovating (PCI), Theory of Planned Be-
havior (TPB), and the Model of Personal Computer Uti-
lization (MPCU)) to explain software developers’ adoption
of methodologies. The authors concluded that adoption
intention is driven by an organizational mandate, the com-
patibility with previous working practices, and the opinions
of coworkers and supervisors towards the methodology. At
a team level, Senapathi and colleagues [49], [56] created
and improved a sustained usage model for agile practices.
In their refined model, the sustained usage of agile is de-
termined by three aspects: agile team factors (experience,
mindset, coach, result, and demonstrability), technological
support (agile practices and tool support), and organiza-
tional factors (top management support methodology cham-
pion, and organizational structure). Mangalaraj et al. [57]
investigated the acceptance of extreme programming. They
identified factors to the organization-wide acceptance of the
innovation divided into five categories: individual, team,
technology, task, and environment. However, one can argue
that experimentation is a different approach for software
development compared to requirement-driven [40]. Thus,
one study focused on this more complex context would be
valuable to understand if these theories would be enough
to explain the (lack of) adoption and implementation of
experimentation in software startups.

4 RESEARCH METHODOLOGY

To achieve our goal of a more comprehensive understand-
ing of the experimentation adoption and implementation
in software startups, we employed a qualitative survey
method. Jansen [58] defined this method in social research
to analyze “the diversity of member characteristics within
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a population.” The author contrasted this method with sta-
tistical surveys, whose goal is to draw general conclusions
about the population based on a sample. This difference is
reflected in the sampling strategies. While in a statistical
survey, the research should aim at a probability sample, that
is, based on the frequencies observed or estimated for the
whole population, in a qualitative survey, the sample should
be diverse to cover all the varieties of the phenomenon [58].

Specific to our study, the population is software startups.
Given that the lack of experimentation increases the proba-
bility of software startups’ failure, as we argued previously,
a reasonable research approach is to survey failed software
startups to understand if and why they have not used
experimentation.

Since failed startups do not exist anymore, to reach them
becomes a challenging endeavor. One way to overcome
this challenge is to look for postmortems, texts available
online, reporting the failure of a startup. There are several
compilations of such descriptions available online.

4.1 Data collection
Although the most common way to collect data in statistical
or qualitative surveys is by questioning people, observing
artifacts is also a valid approach [58]. As the data source, we
used the CBInsights3 compilation of startup postmortems.
The company is well-known among practitioners for col-
lecting and analyzing data about startups. Its reports have
been used as a source for major outlets such as The New
York Times4 and The Financial Times5. With such a reach in
the industry, it is reasonable to believe that CBInsights data
represents a good startups sample. The company put online
its first compilation of startup postmortems in 2014 with
50 cases, and since then, it has updated the list regularly.
Several studies have employed this dataset. For instance,
Klotins et al. [4] used a compilation published in 2015 to in-
vestigate how startups used software engineering practices.

The compilation consisted of a list of failed companies or
products and links to postmortems. The postmortems did
not have a unique structure, ranging from a founder blog
post regarding the company’s failure or its history to a press
article describing the closure repercussions. For the current
study, we used the 2019 second update dated 2019-06-19,
accessed in August 2019, with 311 postmortems.

Based on the CBInsights list, we built the data corpus
to have the startup names, descriptions, and working links
to the postmortems. We obtained the startup descriptions
mainly through Crunchbase6. If a company was not present
in this database, we looked at a startup social network
called AngelList7. The third option to obtain the company
description was to read the postmortem and extract it from
there. If it was not possible to get a description after all these
attempts, we discarded the postmortem and did not include
it in the following steps. Regarding the postmortem, we

3. https://www.cbinsights.com/research/startup-failure-post-
mortem/

4. https://www.nytimes.com/2019/02/10/technology/new-wave-
unicorn-start-ups.html

5. https://www.ft.com/content/65f08660-a762-11e9-984c-
fac8325aaa04

6. https://www.crunchbase.com/
7. https://angel.co/

followed the link provided to check if it was still available.
In case the link was broken, we used WebArchive8, an
archive of Internet websites, to get a link to the last working
version available.

Since the compilation comprehends all types of startups,
the first step was to select software startups from the data
corpus. Using the software startup definition adopted in this
study, two authors separately analyzed all the company de-
scriptions and decided if a company was a software startup
or not. The postmortem was also checked for this purpose
when deemed necessary. In the case of disagreement, the
third author analyzed the case. To operationalize this step,
we came up with the following two criteria:

• the startup has to build software to deliver its vision,
that is, the software is at the core of the business
model; and

• the idea should be innovative, proposing either a
technological or marketing disruption or both.

Applying the first criteria, we excluded startups that
developed hardware and software since this aspect may
impose different types of challenges for experimentation
that is not strictly relevant to software startups. For instance,
hardware startups may not perform experiments as cheaply
as a software startup. Besides that, except for special cases
like embedded systems, developers can deliver newer ver-
sions of software throughout the solution lifetime, while
hardware, as Fredriksen and Brem [9] argued, “at a certain
point the specifications of a physical product have to be
locked down and be substantial enough that a form of end
is seen.” Regarding the second criteria, the innovativeness
should be evaluated considering the time when the devel-
opment started since, in some cases, a similar product is
available in the market at the time of this study, which
may render the idea under evaluation less innovative. Also,
the second criterion is satisfied if the software itself is not
innovative, but the way the startup employs it is. Finally, an
existent product or service proposed in a different or new
market was also considered innovative.

In the first analysis, the two authors agreed on 276
out of 311 startups: an agreement rate of 89%. The third
author further analyzed the 35 disagreed startups. As a
result, we identified 259 companies as software startups.
Examples of excluded companies are WOW Air, a low-cost
airline, and Faster Faster, a lightweight electric motorcycle
manufacturer. Hardware startups such as Seven Dreamers
laboratories specialized in healthcare devices using AI and
robotics, although having a component of software devel-
opment, were also excluded in this step.

The postmortems consisted of a heterogeneous set of
documents, including founders’ blog posts, company state-
ments, and media news about the startup failure. For in-
stance, some statements include instructions on migrating
to a different service, a notice about ending operations, or
thank-you notes to customers and investors. To get an in-
sider’s view of inhibitors to experimentation, we considered
only the founders’ statements portraying the company dy-
namics valuable for this study. Therefore, in the last step, we
removed the startups, which postmortems consisted only

8. http://web.archive.org/
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Fig. 1. Selection process

of media news articles or statements without the founder’s
viewpoint on the company’s life or failure. The final set
consisted of 106 failed companies. Fig. 1 summarizes the
selection process.

We stored all the 106 postmortems to be analyzed. In
some cases, the link led to a statement that was part of a
larger piece of data, e.g., a series of posts, then all pieces
were added. The final data-set contained around 215,000
words. To better describe our sample, we extracted some
information for each startup, either from the postmortem or
other available sources, as mentioned in the previous sec-
tion. Since all the startups have closed, not all information
was available online. We made publicly available [59] all
the links considered, including demographic information of
each company that was considered a software startup.

4.2 Data analysis
There are various techniques available to synthesize evi-
dence from empirical studies. Even though the postmortems
are not scientific studies, some authors (e.g., [60], [61]) used
multiple-case synthesis techniques on this type of data. In
this study, the data analysis followed the logic of thematic
synthesis of multiple cases. Cruzes et al. [62] performed
a comparison between thematic, cross-case, and narrative
synthesis. The authors recognized that thematic synthesis is
a suitable method whenever “one attempts to incorporate
a large number of cases into a single synthesis”, which
is the case in the current study. Thematic synthesis draws
on thematic analysis principles that “is an approach that is
often used for identifying, analyzing and reporting patterns
(themes) within data” [63]. To apply this technique, we
followed the steps proposed by Cruzes et al. [63]. Following
our study’s research objective and research questions, the
unit of analysis is software startup.

The initial data analysis step is to read the whole data to
get immersed in it. Such a step is essential to start having
ideas or identifying possible patterns [64]. We conducted
this step in parallel with identifying postmortems that had
information useful to our research goal. In the next step,
we coded specific segments of text that were related to the
research questions. Codes are “labels that assign symbolic
meaning to the descriptive or inferential information com-
piled during a study” [65]. In this step, we followed an
inductive approach, the so-called open coding [66], that is,
the codes were created based on emerging concepts while
the text was read and without a previous set of codes.

In the next steps, the recommended course of action
is grouping codes into themes and then in higher-order
themes. In our study, though, the large amount of data gen-
erated many codes in the first step. Then, we grouped them
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Fig. 2. Number of startups by business domain.

according to which research question they would help to
answer. We identified themes that represented stages in the
adoption and implementation process and inhibitors that
prevented teams from reaching these stages. Then, within
each of these top-level categories, we created intermediate
themes grouping related codes. Of course, during these
steps, we changed, merged, or even added new codes. While
creating intermediate themes, some codes were also moved
among different high-order themes. This process does not
follow a strictly sequential set of steps but was based on an
iterative process.

The first author performed the data analysis process
primarily. To improve internal validity, the second author
reviewed the codes assigned and proposed changes. Then,
the authors engaged in a continuous discussion to reach
an agreement on the final coding. A similar process was
followed regarding the categorization into themes.

During this process, we used NVivo 129 to code the text
and group codes in high-order themes. As suggested by
Cruzes et al. [62], these tools improve the synthesis validity
by keeping a clear chain of evidence from data to themes.

5 RESULTS

The analyzed sample is heterogeneous, consisting of soft-
ware startups that have operated in a wide range of busi-
ness domains, as depicted in Fig. 2. The life length of
the companies was concentrated on less than five years as
expected for this type of company, as shown in Fig. 3, which
reports the results approximating to the closest number of
years. Unfortunately, for five startups, it was not possible
to determine the length of the active period. The reported
period generally indicates the whole company’s existence
even it had tried different products before. Therefore, this
data should be taken as an approximation. Table 1 shows the
geographical distribution of the software startups analyzed.
The majority was located in the USA (77 out of 106).

9. https://www.qsrinternational.com/nvivo/home
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Fig. 3. Number of startups by the period of activity.

TABLE 1
Number of startups by country.

Country Startups per country
USA 77
UK 7
France, India 3
Canada, Denmark 2
Australia, Belgium, Brazil, Chile,
Finland, Germany, Hong Kong,
Hungary, Ireland, Israel, Poland,
Singapore

1

The identified themes revealed a complex adoption and
implementation process consisted of five progression stages.
We named the overall model as eXperimentation Progres-
sion (XPro) and presented it in Fig. 4.

The first step to adopt and implement experimentation is
the founders’ or founding team’s awareness of it. From now
on, we will use only the term founders to represent founders
or a founding team. In the next step, the founders may
decide to perform experiments to validate their idea; that is,
they may develop the intention to experiment. Then, they
will perform one or more experiments. Finally, they will
analyze the results and then act based on the conclusions.

It is essential, though, to highlight that such a model is
a simplified representation of reality. Many software startup
products are complex and based on several assumptions,
and teams may have diverse approaches for each of them.
Besides that, the reality is not as linear as the model. For in-
stance, in many startups, although a version of the product
was not regarded as an experiment, the usage metrics and
founders’ observations could be analyzed as experiment
results. Therefore, throughout our analysis, we considered
this aspect while forging higher-level themes. Having that
said, it is not valuable to analyze which startups reached
each stage. Such a classification would be imprecise and
not representative of reality. For instance, since products
are based on several assumptions, startups may behave dif-
ferently for each one, performing experiments about some
but taking others as validated. Another factor that reinforces
this argument is the data characteristics. It is composed of
a heterogeneous set of claims with different depth levels
(quantity and quality of details) and breadth (time interval
described), making a strict comparison of startups inade-
quate. Indeed, the data strength is the number of startups

analyzed and the comparisons it allowed among different
companies, featuring inhibitors of several frequencies.

For each of the above-described stages, we identified a
set of inhibitors that may hinder the team from reaching
the next step, and the actions teams ended up performing
instead of the expected behavior. Table 2 presents the in-
hibitors identified. We classified the identified inhibitors ac-
cording to the three aspects specified in Melegati et al. [46]:
individual (I), organizational (O), and environmental (E).
At the individual level, we group inhibitors that emerged
from tendencies or biases from team members as individ-
uals. Then, at the organizational level, we gather inhibitors
related to the internal arrangement and dynamics close to
the startup operation. Finally, at the environmental level, we
group inhibitors from the external ecosystem in which the
company runs, including law, economic, social, and political
systems. Like Cruzes et al. [62], we used quasi-statistics
to bring forward the most frequently occurred inhibitors
for each stage. Fig. 5 shows the distribution of inhibitors
from the three aspects for each stage. In the awareness of
experimentation, there are few inhibitors, and they regard
environmental aspects. Then, in the intention to experiment,
there is the biggest number of different factors, besides
one regarding environmental factors, inhibitors relate to
individual and organizational aspects. To proper experi-
ments, there are still some inhibitors, but all are related to
organizational context factors. Finally, in the last two stages,
proper analysis and consideration of results, inhibitors are
only regarding individual aspects.

In the following sub-sections, we describe each stage
in detail, presenting the identified inhibitors and the alter-
native actions observed in the startups. Additionally, the
consequences of not experimenting are shown in the last
sub-section.

5.1 Awareness of experimentation
The first step to adopt experimentation is to be aware of
such a possibility. The problem of lack of awareness was
rarely observed (only three startups).

5.1.1 Inhibitors
Environment factors. The inhibitors identified for this stage
were grouped under environment aspects regarding lack of

accessible knowledge. The coded excerpts showed a lack
of guidance and the lack of publicity of failed startups.
Such awareness could show newer companies that failure
is possible and that they should avoid the same mistakes.

5.2 Intention to experiment
Once founders are aware of experimentation, the next stage
is to develop an intention to perform experiments to val-
idate the idea. There were no explicit excerpts in data
showing this desire, but inhibitors that prevent teams from
reaching this stage and its alternative, the lack of experi-
ments, demonstrated its existence.

5.2.1 Inhibitors
In this theme, the identified factors prevent the founders and
the team from thinking about experimenting either because
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Fig. 5. Number of identified inhibitors by stage divided by individual,
organizational, and environmental aspects.

they do not believe they are necessary or it is not possible to
perform them.

Individual factors. The most frequent codes are related
to this category. First, in 42 startups, there was an over-

focus on presenting a better, or even a perfect product.
The reasons include a fear that an unfinished product will
not bring customers or the team had an idea of a solution
without a clear problem in mind. An interesting element
came from an Austrian founder, Michael Bohanes, from
Dinnr, an online ingredient delivery service where the user
could select a recipe online, and the ingredients needed
would be sent to the user’s home. He partly blamed his
country’s culture for his failure. According to him, it is
focused on “studying” and “preparing,” then the team spent
much time planning the product without getting feedback
from customers.

Second, in 40 startups, there was an evident over con-

fidence on own ideas leading the startup not to doubt
the need for the product and focus on its implementation.
For instance, Frans Ekman was the founder of Disruptive

Media, which idea consisted of an online service to doc-
ument the story of people’s lives “in a collaborative way
with your friends.” He wrote: “we thought it was a killer idea
to quickly build up a social network that so many companies
had tried to but failed.” In this regard, many founders (9
startups) expected user behavior change. They imagined
that the product would have made the user change their
behavior, and, in most cases, that did not happen.

Third, in 28 startups, the team considered the idea

validated and took different signs as indicators of the idea
value without really checking the average user or customer.
For instance, media appearances, business contest wins, and
investments received induced the founders to believe they
had a good idea. The most common code in this category is
the founder as a user, implicitly taking herself as the repre-
sentation of customers and building the product to meet her
own needs. If such code was found, this extrapolation was
not correct; there were not many customers interested in the
final product, and, consequently, the startup failed.

An interesting element mentioned was the develop-

ers bias towards implementation and their discomfort
with changing directions fast. According to Ben Yoskovitz,
founder of Standout Jobs, a company that provided a suite
of web-tools for recruiting, “the fact is that having a spec-
ification and building to that specification is a lot easier for a
developer; constantly changing requirements [...] makes a devel-
oper’s job harder.” Developers generally measure progress
with the number of lines of code produced. The founders of
Devver, a startup that provided cloud-based tools to make
Ruby developers more efficient, wrote on the startup’s blog:
“Hackers are passionate about, well, hacking. And so we tend to
measure progress in terms of features completed or lines of code
written. Of course, code needs to be written, but ideally, a startup
would have a founder who is working on important non-technical
tasks: talking with customers, measuring key metrics, developing
distribution channels, etc.”

Organizational context factors. Several elements are
grouped here, although with a lower frequency for each.
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TABLE 2
Identified Inhibitors for Reaching Different Stages of Experimentation Adoption and Implementation. The letters indicate inhibitor nature: I for

individual factors, O for organizational, and E for environmental.

Theme
Number

of startups
Description

Inhibitors to
awareness of
experimentation

Lack of accessible knowledge (E) 3

Unawareness of experimentation or its importance prevented some
founders from testing assumptions. Founders are not aware of failed
cases given the lack of publicity to them which leads startups not to
consider this possibility.

Inhibitors to
experimentation
intention

Over-focusing on product and its
perfection (I) 42

Founders aim for a perfect product to be offered to customers. In this
scenario, they see experiments as not ready versions that could threaten
the business.

Over confidence on own ideas (I) 40 Founders strongly believe that their ideas are good and testing them is
not necessary. In some cases, they expect a change on user behavior.

Supposedly validated idea (I) 28
Several facts may make founders believe that their idea is valuable
without further experiments. Examples range from an early high traffic
to the product usefulness to the founder.

Issues regarding large amounts of
capital (O) 6

For capital-intensive products, founders are led to think they need many
users to keep the service running and focus on that from the beginning.
Another problem is actually large amounts of capital that make founders
spending to build the product instead of following a more cautious
approach of validating users’ needs.

Investors preferring the fast
growth of the startup (E) 5

Investors usually have a pool of startups and know that most of them
will fail, and they want those that survive to make money. Therefore,
they influence startups to grow as soon as possible.

Scarcity of technical resources (O) 5 Developing and running experiments demand technical resources that
are scarce in software startups.

Over-focusing on customer base
growth in early phase (O) 3 Some products are based on the scale so founders are led to grow the

number of customers in a early phase rather than testing their ideas.
Developers bias towards imple-
mentation (I) 2 Developers prefer clear guidelines on what to do instead of the changing

aspect of experimentation. They measure their progress by lines of code.
Demand for a reliable product
(O) 2 Mission-critical products demand a more ready version to be sold.

Experiments are deemed as imperfect products.

Time pressure (O) 1 Doing experiments takes time that some startups do not have because of
constrained resources.

Inhibitors to
valid
experiments

Demanding B2B customers (O) 12 Selling to large companies is complex and time-consuming. These cus-
tomers also demand more complete products.

Complex multiple-sided business
models (O) 12

Products that reach different types of customers (such as platforms)
present a challenge for experimentation creation since it is hard to test
about one customer type without the other types.

Lack of development resources
(O) 10 The lack of developers hinders the use of experiments. For instance, star-

tups that outsourced their development struggled with experimentation.

Changing business context (O) 6 In a fast changing market, it is hard to create experiments which results
will be useful after a period of time or in a different context.

Dispersed customer base or us-
age (O) 3

These challenges are related to the quality (how representative) and
quantity of experiment subjects. For instance, it is hard to develop
comprehensive experiments valid for several customer segments or if
the solution is used for a short period in a year.

Concern on negative user percep-
tion of the product (O) 2

Some founders reported difficulties to make experiments without risking
on how customers perceived their products through the user interface
and experience.

Highly coupled assumptions (O) 2 Business is complex and many assumptions should be tested. Sometimes
it is hard to separate the effect produced by different experiments.

Inhibitors to
valid analysis

Confirmation bias (I) 2 Founders often tend to analyze the results in a way to support their
claims instead of taking a neutral view.

Choice-supportive bias (I) 1 Tendency to stick to the choice previously made even if the results are
not good.

Misled by the limited number of
users (I) 1

Some product may need a large pool of users to be attractive. Some
experiment results are ignored because founders attribute the results to
the lack of users.

Inhibitors to
considering
results

Resistance to change (I) 5
Several factors at individual level make founders ignore experiment re-
sults. Examples are too much time spent to quit, desire to look successful,
and stubbornness.

Fear of losing customers (I) 1 An experiment result may indicate that a product should be abandoned.
But it may already have active users and losing them is hard.

Fear of losing revenue (I) 1 Abandoning a product may represent a loss of revenue which is vital for
a resource-constrained company.

Obfuscated by the number of
new users (I) 1 Founders may ignore the experiment results because new users continue

to be acquired, for instance, as the result of marketing strategies.
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First, there are issues regarding large amounts of capital

like the cost to run some products (e.g., expensive oper-
ation). For instance, GameLayers was producing an inno-
vative Passive Massive Multiplayer Game that demanded
many people to handle the complex task of building and
supporting such a game.

Second, there is a scarcity of technical resources that
makes running experiments harder or too demanding for an
already time and resources constrained team. For instance,
keeping up-to-date with third-party libraries, more time
needed to change a platform built in-house, or underes-
timating the coding effort make teams focus on software
development instead of considering experiments about the
customer. Still related to technical inhibitors, there are
mission-critical products that cannot fail and demand a

reliable product to be sold. Such a constraint prevents the
creation of experiments that only partially presents some
features.

Some products demand a big scale to be profitable, lead-
ing founders to over-focus on customer base growth even
though the idea is not validated yet. For example, Take Eat
Easy was a food delivery service for highly-rated restaurants
based on a platform connecting customers, couriers, and
restaurants. Such a business model is heavily dependent
on the number of individuals for each role; that is, the
attractiveness (financially worth) for couriers will depend
on the number of customers and restaurants. In these cases,
it is hard to do valuable experiments without a minimum
number of users.

Finally, in one startup, it was observed a time-related
inhibitor where the time pressure present in the startup
context made them abandon experiments. Frans Ekman
from Disruptive Media, an online service to document your
whole life, said: “In the beginning we were kind of on the right
track with mockups and wireframes, even doing usability tests,
but the time pressure made us cut corners and just get it out.”

Environment factors. The codes related to these factors
were the least common. They were grouped in one category
represented by investors preferring fast growth because
having more users makes it easier to attract investors. Since
a venture capital bet has a low probability of success,
investors look for companies that, if successful, will pay
for those that were not and generate a profit on the overall
portfolio. Therefore, startups that received investments are
compelled to grow their customer base as soon as possible,
and an experiment-oriented approach is slow. For instance,
UDesign, an online tool to create unique clothing pieces
using mathematical simulation, reported pressure from in-
vestors to grow the customer base. In summary, startups
tend to concentrate on getting customers instead of experi-
menting on the market.

5.2.2 Alternative: Lack of experiments
In this category, we grouped examples of startups that did
not do experiments. The most common example was the
focus on getting customers. As Kevin Gibbon from Shyp, a
service to ship packages, mentioned: “growth at all costs is a
dangerous trap that many startups fall into, mine included.”

Because of not doing experiments, teams realize, usually
late, that they based their businesses on wrong assump-

tions. Kyle Hill, from HomeHero, a platform to find care-

givers to elderly people, mentioned: “we overestimated the
ability of health systems and insurance companies to pay for non-
medical home care.”

5.3 Valid experiments
Once the founders develop an intention to experiment, they
should create and execute experiments. Nevertheless, the
intention is not enough to perform valid experiments, which
would lead to reliable results. Another set of inhibitors is
responsible for leading founders to do invalid experiments.

In the analyzed startups, we observed several valid
experiments performed by startups. An interesting example
is Vatler, whose idea was to build a mobile app to make
parking easier. As the founder Hamza Chahdi told: “Getting
no answer to our emails and calls, we decided to experiment
our model to see if it could work. Within 2 weeks, we had 4
restaurants on-board. We were parking their customers only on
weekend nights at first to understand the needs better and iterate
on our product. My co-founder and I were parking cars ourselves
every weekend night.” Another example was a crowdfunding
campaign, that is characterized by the need for a minimum
pool of interested customers to build the product. Such
an offer can be considered an experiment that probes the
customers’ desire for a product.

5.3.1 Inhibitors
In this theme, the identified inhibitors prevent the cre-
ation and execution of reliable experiments, which lead
the founders intending to test their hypotheses to perform
imperfect or invaluable experiments.

Organizational context factors. All identified inhibitors
were grouped under this category. The two most common
aspects were complex multiple-sided businesses and de-

manding B2B customers, both coded in 12 startups. Re-
garding multiple-sided businesses that depend on different
user classes to work, such diverse types of users hinder the
creation of experiments. A common example is a sharing
economy platform where some users must be interested in
offering a service and others willing to pay for it. In these
cases, it is hard to perform proper tests to evaluate the desire
of one type of user without having several users on the other
side. Dalton Caldwell from App.net, a startup that proposed
a network of social apps, called this problem the “chicken-
and-egg issue.” In their case, it was related to developers and
users of the applications. An associated problem mentioned
by founders was highly coupled assumptions or as Andy
Young from GroupSpaces, which developed web-based
tools for clubs and other real-world groups, mentioned
“too many assumptions to test meaningfully.” This aspect is
similar to over-focusing on customer base growth in the
early phase, an inhibitor to the intention of experimentation,
but regarding a different moment in the process. While
the inhibitor to intention prevents founders even to con-
sider experiments, the inhibitor to create valid experiments
hinders founder that already want to experiment but find
difficulties to perform valid experiments. Regarding B2B
products or services, several founders complained about
how hard it is to sell to big companies, including time-
consuming processes for buying a product or signing a
contract. This type of customer is reluctant to prototypes,
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which are generally used to test ideas, and only pay for
ready products.

Then, several inhibitors were related to the lack of

development resources. Different aspects were mentioned
in the ten startups in this category, but, as a commonal-
ity, they regard the difficulty of creating experiments with
limited development resources or a technically challenging
problem. An example is outsourcing software development.
As Michal Bohanes from Dinner mentioned: “As one of my
first investors later told me, you must have developers on your core
team in the same room. You need to be able to iterate and execute
fast. There is no slower way than doing this with developers
overseas, even if your company isn’t tech-heavy (such as Dinnr).”

Although rarely mentioned, an interesting inhibitor is
a changing business context. In this regard, the founders
mentioned market changes at high speed and, consequently,
a different context between the startup’s beginning and later
stages. In both cases, the results of experiments may change.

Regarding dispersed customer base or usage, a rarely
mentioned yet interesting inhibitor was the problem of
seasonal use. Zen99 provided tax and insurance tools to sup-
port independent workers. An issue for them to experiment
was that there was a peak of tax tools use in the weeks before
income tax forms’ due date, followed by a drop to almost
none. Such a tight opportunity window hinders the execu-
tion of a large number of experiments. Another challenge in
this category is the existence of different customer segments
hindering the creation of comprehensive experiments.

Finally, there were also concern on negative user percep-

tion of the product regarding how to perform experiments
without risking the product image and user experience. For
instance, Adam Zerner from College Inside View, an online
tool to help applications to universities, mentioned: “I think
that users (mostly unconsciously) look for signals of competence.
[...] A good design is a signal of competence.”

5.3.2 Alternative: Invalid experiments
In this section, we present the most common examples of
experiments that, not being performed systematically, lead
to wrong conclusions.

The most common code (12 startups) in this category
was that several teams focused on asking direct questions

to users. There are several issues with this approach. First,
users may concentrate on their problems, and the team ends
doing a solution for that specific customer or a small set
of people. Jonas Bogh, from Hivebeat, an online tool to
help student organizations to promote and manage events
on campuses, described this problem: “Listening to your
customers is critical, but don’t always let them tell you what
to build. Your customers know the problem, but in most cases,
they don’t know the right solution to the problem (remember the
story about Henry Ford and the horses?). That’s your job to figure
out. We didn’t realize that and we therefore ended up building
too many features with no real vision for where the product was
heading.” Second, a simple set of questions may not get
the real intention from those potential customers. Michal
Bohanes from Dinnr gave an example: “[...] we committed the
big mistake of presenting people with the idea and asking them if
they liked it and would buy it. And when people said yes, WE
[author’s highlight] thought they meant ‘launch it and I will
buy’ [but] in reality, they mean ‘I’m not entirely excluding the

possibility that one day [in an extreme, absurd scenario] I might
be tempted to purchase a trial product from you.” This mismatch
is related to the difference between interest and paying.

A related issue is to use close people to experiment.
Some teams used relatives or friends in experiments, but
these people might be biased to help founders for other
reasons besides the product itself. An example came from
EventVue, which built online communities for conferences
to improve networking among participants. The founders
said: “[...] because we were basically calling on friends of friends
who ran events to be our customers, we didn’t learn what event
organizers in general wanted or how to acquire them as customers
in a scalable way with the ‘private social network product.”’

The second most common factor is getting the wrong

idea of an MVP. Jonas Bogh from Hivebeat discussed that
“however, it seems like lots of startups get the idea of MVP
wrong. We did too. Instead of building a great and very simple
MVP, we built an unstable product with too many features.” In
summary, founders usually describe an MVP as a product
with the minimum set of features that allows it to be sold.
This idea does not give the notion of hypotheses checking
that would be useful to experimentation as in Lean Startup,
the methodology that popularized it. Within Lean Startup,
the MVP is the minimum artifact to test an assumption
that the team has about the customer or market, and it is
not necessarily the final product. For instance, it can be a
landing page or an explaining video.

Another related issue found is spending a long time

doing the experiment. For instance, IntroNet, an online
service to make introductions between people easier, took
eight months to develop their ‘‘alpha”, which, interestingly,
they had called MVE, Minimal Viable Experiment.

5.4 Valid result analysis
Once experiments are planned and executed, the results
are available to be analyzed. This step is not straightfor-
ward as it may seem. Several factors may lead founders
to reach wrong conclusions, e.g., extrapolating results to
bigger audiences. Again, this step was not directly observed
and coded in data, but the inhibitors and alternatives found
demonstrated its existence.

5.4.1 Inhibitors
In this theme, we categorized inhibitors that prevented a
valid analysis of experiment results. Here again, some biases
were mentioned, like the choice-supportive bias. As Martin
Erlic from UDesign mentioned “when you choose something,
you tend to feel positive about it, even if the choice has flaws. You
think your dog is awesome - even if it bites people every once in
a while.” He also mentioned confirmation bias: “we tend to
listen only to the information that confirms our preconceptions.”
Finally, some products need a large pool of users, and
founders are misled by the limited number of users and
think the results could get better if adoption grows. Don
Smithmier of Kinly, a social network tailored for families,
called it the distribution challenge.

5.4.2 Alternative: Invalid results analysis
In this theme, some startups where the teams misunder-
stood experiment results are represented. The most common
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codes in this category were initial success and not general

results. As an example of the first, there is an excerpt
from Mark Hendrickson from Plancast, a social network
that would allow users to see which events in the area any
friend is planning to attend. He mentioned “while the initial
launch and traction proved extremely exciting, it misled us into
believing there was a larger market ready to adopt our product.”
Regarding the latter, Chris Hoogewerff from HelloParking,
a company described as an Airbnb for parking, mentioned
“And though I didn’t realize it at the time, doing ‘xyz for parking’
isn’t the way to build product and discover value. The transitive
property doesn’t apply as well in the startup world (‘If x worked
for industry y, then x must work for industry z’).”

5.5 Effective use of experiments results
From the experiments’ conclusions, founders should con-
tinue developing, probably performing other experiments,
or reconsider their plans adapting them to the results. In
the analyzed data, some teams observed the experiments’
conclusions and acted based on that. A typical example was
startups that closed, although still having money to spend,
and returned the capital to investors. We observed seven
startups like that. For instance, Kyle Hill from HomeHero
mentioned: “The good news is we are pulling out early enough,
with significant cash remaining, so we can find a new path
forward and continue our same mission of promoting health and
wellness in the home.” Nevertheless, we also detected a set of
inhibitors to achieve this step.

5.5.1 Inhibitors
Several times, founders ignore some experiment results
because of different reasons. Since there are several filters
before a team succeeds in experimenting, fewer pieces of
text are coded in this theme. Nevertheless, they bring inter-
esting insights.

Individual factors. Most of the elements in this theme
are in this category, generally related to a resistance to

change. The codes include: entrepreneurs should be seen
as successful, gone too far to quit, not admitting that it is a
bad idea. Martin Erlic from UDesign mentioned a cognitive
bias called “ostrich effect, [...] the decision to ignore dangerous
or negative information by ‘burying’ one’s head in the sand, like
an ostrich.”

Organizational context factors. Here, two different
classes of problems happen. First, there is a need to continue
even with bad experiment results because startups have fear

of losing revenue needed to survive or the fear of losing

the current customers. Second, results are obfuscated by

the number of new users, generally caused by marketing
efforts. These practices lead to a steady income of interested
people hiding the lack of a sustainable business.

5.5.2 Alternative: Not considering experiment results
An experiment’s results may tell startups that they have to
give up on their idea or pivot. Sometimes, startups do not
take these attitudes quickly enough; that is, they are slow to

respond to results. For instance, Thomas Pun from Delight,
a tool to allow developers and designers to see how users
interact with apps, described a pivot his startup has done
inside a section titled “we didn’t pivot hard enough”. He also

said “Even though we saw promising signs early on, we waited
too long to fully commit to it. The team was constantly distracted
and didn’t know where the company was really heading.” This sit-
uation indicates a lack of vision shared by the startup team,
leading it not to grasp the experiment purpose, not learn
properly from the results, and act upon them promptly. In
other cases, startups continue even with bad results. Mike
Krupit from IntroNet mentioned “We couldn’t validate many
of our hypotheses, but launched beta (MIP, Minimal Investable
Product) a few months later.”

5.6 Consequences of non-adoption and non-
implementation of experiments
In this theme, we gathered all codes related to facts that
happened within the startups that could have been avoided
if the teams had performed experiments. The most common
identified element was scaling before the right moment.
For instance, David Hyman from Bling.ly, an streaming
video app for performing arts, wrote “make sure you’ve
built an application that is charting with high retention metrics
BEFORE [original author’s highlight] you give away any equity
or pay for what you hope to be a large scale funnel.” Sometimes,
the startup is even able to receive investment like Standout
Jobs. The founder Ben Yoskovitz wrote “I raised too much
money, too early for Standout Jobs ( $1.8M). We didn’t have the
validation needed to justify raising the money we did.”

A common consequence, though, in the founders’ words,
was never found the product-market fit. We coded the term
15 times. For instance, Chris Hoogewerff from HelloParking
wrote “we never managed to find product-market fit, and we
were having trouble scaling.” Hsu Ken Ooi from Decide.com,
an e-commerce website for electronics powered with best-
time-to-buy prediction features, wrote “expanding your target
market, like we did by supporting more categories and building
when to buy features, doesn’t help you get to market-fit. In fact,
I’d argue it makes it harder because there’s more needs to satisfy.”

Sometimes, founders realize the startup was not solving

a real problem. Michal Bohanes from Dinnr wrote “this will
be the number one lesson I will never forget and the absolute key
to understanding Dinnr’s failure - we were not solving anyone’s
problem.”

5.7 Reasons for failure beyond a lack of experimenta-
tion
In addition to the previously presented, we observed in data
some reasons for failure beyond a lack of experimentation.
Such consideration is essential to highlight that a software
startup is a risky endeavor. Even if all the recommended
practices are followed, the final result may not be a repeat-
able and scalable business. The most common factor identi-
fied was environment issues. For instance, in this category,
there are problems with regulations like HomeHero, which
proposed a platform to find caregivers for older adults. The
company was getting traction in the area of San Francisco
with 1200 professionals on the platform. However, a change
in federal regulations would force the company to hire
all the professionals to continue running. Such imposition
made the business model not viable, and the startup closed.

Another interesting example is Vatler that performed an
interesting experiment as described in Section 5.3, where the
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founders themselves were parking cars for restaurants to
evaluate the need for such a service. Although the results
were good, the company failed because of legal reasons.
Hamza Chahdi, one of the founders, explained: “Suddenly,
two months ago, we received a phone call from the city explaining
that traditional parking companies were not happy with the way
we were poaching business from them and that we had to slow
down our growth. We ignored this warning. Ten days later, we
received a phone call from the police department telling us that
our permits had not been granted and they gave us a warning
because we were operating illegally in most of our locations.”

6 DISCUSSION

The XPro model describes the adoption and implemen-
tation of experimentation in software startups similar to
previously described diffusion models but extends the with
specific stages. Answering RQ1, we identified the following
steps: awareness of experimentation, the intention of ex-
perimenting, performing experiments, analyzing the results,
and acting based on the conclusions. The first two stages
(awareness and intention) are similar to what previous
adoption models describe (e.g., the process of innovation-
decision in the diffusion of innovations theory [47] or
TAM [50]), while the latter regards implementation or
post-adoption. Nevertheless, the process of experimentation
adoption and implementation is more complex than what
is described for agile methodologies [49], for instance. An
explanation for this may be that experimentation is more
a concept than a method with a defined set of practices.
Even Lean Startup, which is strongly based on experimen-
tation as mentioned before, lacks a set of clearly defined
practices [67]. Another difference is that experiment results
may lead to unpredictable outcomes, e.g., a completely dif-
ferent product or even a complete stop of the development
process. Such a consequence is different from a change from
waterfall to an agile approach, which is oriented to process
change rather than product overhaul.

Regarding RQ2, a various number of inhibitors pre-
vent the progression between different stages. As expected,
the popularity of methodologies, such as Lean Startup,
makes founders aware of experimentation-inspired tech-
niques such as MVP. Then, the majority of inhibitor occur-
rences happen in the second stage: the intention to experi-
ment. As shown in Fig. 5, it is possible to observe the pre-
dominance of individual-related inhibitors in this category,
such as overconfidence on own ideas and over-focusing
on the product and its perfection. Then, in the next stage,
the larger part of inhibitors is related to the organizational
context (such as the business model or development team).
Finally, for the smaller number of startups that managed
to perform experiments and analyzed them correctly, the
most significant obstacle to utilizing the experiment results
is human-related inhibitors.

Regarding the inhibitors to the intention of experiment-
ing, the most observed factors were related to individuals,
mainly founders’ over-confidence in their ideas. In this
regard, our model can be better understood drawing upon
other adoption models. For instance, in the persuasion
stage, Rogers [47] mentioned five aspects regarding how

adopters perceive innovation: relative advantage, compat-
ibility, complexity, trialability, observability. In the context
of our study, many of the identified individual inhibitors
are related to how founders perceive the relative advantage
and compatibility of experimentation with the process they
want to follow to implement their ideas.

Once the intention barrier is overcome, most of the issues
lie in the organizational context, such as business nature. Es-
pecially multiple-sided business models present a challeng-
ing context for experimentation. In Rysman’s words [68]:
“a two-sided market is one in which 1) two sets of agents
interact through an intermediary or platform, and 2) the
decisions of each set of agents affect the outcomes of the
other set of agents, typically through an externality.” This
definition can be extended to multiple-sided businesses.
Such dynamics may imply a “chicken-and-egg issue” (bor-
rowing the term used by one of the reviewed founders) for
a startup. Besides that, as the total of assumptions grows
based on the number of sides, it becomes harder to develop
experiments that could evaluate one side’s wish without the
other, given the difficulty of emulating users on other sides.

Regarding the stage of valid analysis of the results, the
inhibitors return to individual aspects. This fact may be a
consequence of this experimentation step, interpreting the
results obtained, being highly cognitive intense. Because
of this fact, cognitive biases appear as major inhibitors at
this step of experimentation implementation. We identified
two, i.e., confirmation and choice-supportive biases. Mo-
hanani [69] performed a systematic mapping study on the
topic in software engineering literature and demonstrated
that cognitive biases are prevalent among developers. Our
findings extend the range of cognitive biases beyond soft-
ware development processes and include the broader soft-
ware startup context.

Finally, inhibitors to properly consider the experiment
results are still on individual aspects as cognitive biases’
prominence shows. This phenomenon can be a consequence
of the nature of this last stage. Here, founders have to
accept experiment results and act based on them, which may
sometimes be against their inner beliefs.

Compared to our previous exploratory study on enablers
and inhibitors of experimentation in early-stage software
startups [46], this study focused on inhibitors, identified
more of them, and described how they impact each step
of the adoption and implementation of experimentation.
The study is not restricted to early-stage software startups
and is based on many cases. As a result, in addition to
the newly identified inhibitors, we extended and refined
some inhibitors identified in [46]. Regarding individual
inhibitors, e.g., the inhibitor founder in love with the idea is re-
named as over confidence on own ideas. Understanding an MVP
as a prototype is refined into two inhibitors - lack of accessible
knowledge and over-focusing on product. Two inhibitors in the
organizational context category are extended: lack of support
and flexibility of software platforms becomes lack of development
resources, as the lack of resources to run experiments is
also related to issues with large amounts of capital; the
small number of customers that make hard to run experiments
becomes dispersed customer base or usage. Instead, fear of
losing customer in B2B cases is refined into two inhibitors -
demanding B2B customers and fear of losing customers. Finally,
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regarding environmental inhibitors, difficulty to get capital is
extended as issues with large amounts of capital.

In summary, our results corroborate the findings from
previous research regarding the adoption of experimenta-
tion in general and in software startups in specific. In their
exploration of the use of experimentation in the software
industry, Lindgren and Münch concluded that it is not
mature yet and that “[t]he overall impression from this
study suggests that technology has a supporting role in
an experiment system, and that the more significant issues
lie elsewhere” [36], that is, “the technical challenges have
been solved.” Our results also show the predominance of
individual and organizational inhibitors, not necessarily
related to technical aspects in adopting and implementing
experimentation. Regarding software startups, Gutbrod et
al. [13] observed a focus on developing the solution rather
than validating the need. The authors suggested that the
main reasons were lack of awareness of such possibility and
lack of knowledge on how “to identify, prioritize and test”
assumptions. Such an element is related to the individual
factors we observed in the intention to experimentation
stage. However, our results improve the understanding
showing that these aspects may happen even after executing
an experiment. Still related, the focus on developing the
solution was already identified as one of the key challenges
for early-stage software startups [70].

6.1 Threats to validity

Runeson and Host [71] described a scheme to assess threats
to validity composed of four aspects: construct validity,
internal validity, external validity, and reliability. We have
followed the authors’ advice and addressed the validity
threats throughout the whole study. Below, we discuss each
aspect and how we mitigated the related threats.

Construct validity reflects “to what extent the opera-
tional measures that are studied really represent what the
researcher have in mind” [71]. In this regard, a threat is the
lack of agreed definitions of software startup and experi-
mentation concepts. To mitigate this threat, we defined a
shared view among the co-authors from the beginning, and
all were involved in startups’ identification.

A threat to internal validity is the use of data without
contacting the original authors. This aspect concerns with
causal relationships and a possible erroneous inference of a
factor determining a consequence when, in reality, another
factor not taken into account is the determinant. A key
aspect in this regard is the varying amount of data for each
startup. Founders presented different levels of details of
their startups that hindered us from describing the startups
better and evaluating if different inhibitors happen more
often in contexts with specific characteristics. For instance,
the information about development methods used, such as
DevOps, which could improve experimentation use, was
never mentioned in the dataset. Another dimension that
would be interesting to evaluate was startup size, including
the number of employees or customers, which had already
been described as turning points for requirements engi-
neering activities in startups [72]. However, the available
information regarding this aspect was limited. Additionally,
there was no systematic information about the founders’

background. Generally, they presented themselves as the
startups’ founders without properly describing their previ-
ous background. What we did know is that, at the start of
these companies, teams were small, as mentioned in several
statements, and founders performed different activities from
strategic decisions to bureaucratic issues, including devel-
oping software. Still, the comparison of multiple instances
of the phenomenon permits a more reliable indication of
a cause-effect relation. An additional threat to internal va-
lidity is that, due to the dataset limitations, we could not
detect founders’ motivations for publishing the collected
postmortems. Some of these motivations might compromise
the quality of the data because the founders may hide or
mispresent their experiences for various reasons. However,
our reading of these postmortems did not render the moti-
vation as a concern.

External validity concerns how generalizable the results
are. In this regard, a typical threat is a small sample size.
The high number of investigated startups in this study con-
tributes positively to the findings’ generalizability to other
failed startups. Still, the lack of control over a convenient
sample might have been a problem. One notable aspect is
the percentage of startups located in the USA. There are
several reasons for it: first, the original database is built by
an American company. Second, the language considered ex-
plicitly was English. Even if we gathered other postmortems
online, this choice could still favor American companies’
inclusion since it is expected that, when describing failure,
founders use their mother languages. Besides that, as we
observed in one of the selected startups, in some cultures
such as Asian or European, failure is a shame or a sign
of incompetence, which could hinder founders from these
cultures to publish postmortems. Nevertheless, the lack of a
clear difference between the startups from the USA to those
from other countries leads us to believe that this is a minor
threat. Regarding the other aspects of these startups, like
business domain or the active period length, the diversity in
these aspects diminished the threat to external validity.

We cannot generalize this study’s findings to active
software startups due to the sampling strategy. Therefore
the study is not in the position to answer questions such
as “whether active software startups use experimentation”
and “what inhibits active software startups from adopting
and implementing experimentation.” To do so, researchers
should collaborate with active startups, which generally is
demanding, given the limited resource and time they have.

Besides that, our deliberate choice not to consider prod-
ucts that demanded hardware development did not allow us
to identify inhibitors related to software development inter-
facing with hardware development. As mentioned earlier,
we believe that there may be inhibitors related to hardware
development or the interface with software development.
However, we decided to focus on software development to
better understand inhibitors in such a context. The inhibitors
related to experimentation in hardware startups could be
investigated in future work.

Reliability concerns “to what extent the data and the
analysis are dependent on specific researchers.” A study is
reliable if the researchers make results independent of them
in such a way that another group of researchers doing the
same study would reach the same results [73]. In this study,
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we tried to make the study process as transparent as possi-
ble by describing all steps in detail. For instance, we made
the links to postmortems available online. Additionally, in
the coding phase, which may present a significant threat
to reliability, two authors discussed the codes, excerpts,
and emerged themes to mitigate the results researcher-
dependency. Using two authors in the analysis process also
mitigated another potential threat to reliability, which is
related to the fact that the founders wrote the postmortems
as general reflections. We needed to interpret the data and
associate it with experimentation, which could reduce the
study’s reliability as data analysis was more dependent on
the specific researchers.

Finally, the founders wrote the postmortems as a general
reflection; we needed to interpret the data and associate
it with experimentation. This interpretation reduced the
study’s reliability as the data analysis was more dependent
on the specific researchers. To mitigate this potential threat,
we have used two researchers in the data analysis process:
what one researcher did was checked by the other.

Another aspect to reflect on is that our study could not
identify all possible inhibitors. Such a goal is almost im-
possible to reach, given the plethora of possible scenarios a
software startup can face. One noticeable limitation regard-
ing this is that, despite the importance of a business context
in which a software startup operates, we have identified
relatively few inhibitors related to it. This limitation is due
to the nature of the data we had and the limited possibility
to obtain more information related to the business contexts
of the studied software startups. However, the stages and
the initial list of inhibitors identified can serve as a start in
searching for additional inhibitors.

7 CONCLUSIONS AND FUTURE WORK

Although experimentation could improve the success rate,
software startups still do not use it so often. To analyze
this phenomenon, we conducted a qualitative survey study
using 106 postmortems from a database of materials on
failed startups. Through a thematic synthesis, we developed
the eXperimentation Progression (XPro) model to explain
the adoption and implementation of experimentation in
software startups. It consists of the following steps: aware-
ness of experimentation, intention to experiment, execution
of experiments, analysis of the results, and application of the
conclusions. For each step, we identified a set of inhibitors
that prevent the step from being reached and the alternative
situations that may happen.

Our study is one of the first to investigate the adoption
and implementation of experimentation in software star-
tups. Our results contribute to the adoption and implemen-
tation theories regarding software process innovations such
as experimentation. Compared to previous models in the
literature, XPro proposes another acceptance step regarding
the consequences of experiment results. Besides that, the
study improved the literature regarding inhibitors, their
relevance, and how they hinder experimentation in software
startups. These results could inform the development of
new techniques to foster the adoption of experimentation in
software startups. For practitioners, the catalog of identified
inhibitors acts as a list of possible problems that founders,

development teams, and other stakeholders should avoid
or, at least, be aware of the existence. Investors, accelerators,
and other stakeholders could use the XPro model as a guide
to monitor startups with which they are working. Our study
has a broader implication to software engineering practice
in general since uncertainty in development environments
is increasing, calling for experimentation as an essential
element of development processes. For instance, developing
a feature will go beyond satisfying a requirement and will
evaluate if the consequences of that feature match the initial
expectations.

Our next step is to validate the progression model and
inhibitors using primary data by conducting in-depth case
studies of active software startups, ideally in a longitudi-
nal manner. We could also use “member checking” [74],
involving entrepreneurs that had their startups analyzed in
the study to check our results. A survey study of a larger
number of software startups could be conducted to validate
this study’s findings further and improve generalizability.
Such work could also evaluate if startup characteristics
such as size and business domain are moderating factors to
specific inhibitors’ presence and impact. Other studies could
focus on a determined stage, probably using more intrusive
research methods like case studies, to reveal other inhibitors,
like environmental factors, that were limited given the data
we analyzed here. Our study focused on inhibitors, but an
interesting investigation would be to explore the enablers
better. In our previous work, we had already identified some
factors, but as our work showed, other enablers could be
found by analyzing a larger sample. Future work could also
focus on developing new practices to foster experimentation
in software startups. In this regard, a natural path is to
focus on mitigating or eliminating the identified inhibitors.
For instance, given the founders’ over-confidence in their
ideas, new tactics could incorporate debiasing elements to
encourage founders to challenge their ideas.

Future work could evaluate the applicability of the XPro
model in other contexts. For instance, to which extent
the identified stages happen in consolidated companies?
Whether other software process innovations would follow
similar stages, either in startups or established software
organizations. Another interesting avenue to explore is re-
lationships among different inhibitors, to understand, for
instance, if an inhibitor’s presence increases the probability
of another one. Finally, our study showed that interesting
empirical results could be obtained using postmortems col-
lections. Other researchers could employ the same data to
investigate other research problems in this context.
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