
This version is the authors’ version of:

Surfacing Paradigms Underneath Research on Human and Social Aspects of Software
Engineering

Please cite as:

J. Melegati and X. Wang, “Surfacing Paradigms Underneath Research on Human and Social
Aspects of Software Engineering,” in 2021 IEEE/ACM 13th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), 2021 pp. 41-50.
doi: https://dx.doi.org/10.1109/CHASE52884.2021.00013

Link in IEEE Computer Science Digital Library:
https://www.computer.org/csdl/proceedings-article/chase/2021/140900a041/1tB7t2tSVeo

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

https://dx.doi.org/10.1109/CHASE52884.2021.00013
https://www.computer.org/csdl/proceedings-article/chase/2021/140900a041/1tB7t2tSVeo

Surfacing Paradigms underneath Research on
Human and Social Aspects of Software Engineering

Jorge Melegati
Faculty of Computer Science

Free University of Bozen-Bolzano
Bolzano, Italy

jmelegatigoncalves@unibz.it

Xiaofeng Wang
Faculty of Computer Science

Free University of Bozen-Bolzano
Bolzano, Italy

xiaofeng.wang@unibz.it

Abstract—Software engineering is a wide field with topics
ranging from coding to organizational aspects. In the last two
decades, researchers have developed a growing interest in the
human and social aspects of software development. To investigate
these phenomena, researchers have often employed methods
common in social sciences such as case study and ethnography.
These methods usually have specific underpinnings about the
relationship between knowledge and the world, the so-called
research paradigms. Although these paradigms are essential to
define what is legitimate knowledge and how research should
be performed, so far, this topic has been barely discussed in
the software engineering community. In this paper, our goal is to
explore how different research paradigms reflected in the current
studies of human and social factors in software engineering.
To achieve this goal, we present an overview of the main
research paradigms: positivism, postpositivism, constructivism-
interpretivism, critical theory, and pragmatism. Then, we analyze
the papers published in the Technical Track of the International
Conference on Software Engineering (ICSE) that focus on human
and social aspects to explore if and how these paradigms
influence Software Engineering research. Our results show that
these studies generally do not explicate the paradigms they are
following but, from several aspects, it is possible to relate the
studies to a pragmatic perspective with a strong postpositivistic
influence. We also discuss topics on which research could be
enriched by employing diverse paradigms.

Index Terms—research paradigms, human factors, research
methods

I. INTRODUCTION

Computer science in general and software engineering in
specific are essentially multidisciplinary. In the computer sci-
ence field, we can observe such diverse research communities
ranging from theoretical arguments as algorithms to organi-
zational and human aspects like human-computer interaction.
The rise of ethical and social implications of computing led
Connolly [1] to argue Computer Science as a social science.
In software engineering, so diverse elements as programming
languages and development practices co-exist. For instance,
in ACM’s Computer Classification System1, the high-order
category Software and its engineering is divided into three
categories: software organization and properties, software
notation and tools, and software creation and management.
While the second category concerns “hard” arguments like

1https://dl.acm.org/ccs

compilers and formal language definitions, the third deals
with more human-related aspects such as development process
management and development techniques.

Such a variety of arguments led to an increasing diversity of
research methods and tools, especially the so-called qualitative
methods used extensively in the social sciences. Software
engineering researchers started to employ them to study human
and social aspects of software development, as what we
can observe in the pioneer paper of Seaman [2]. Since the
publication of this paper in 1999, not only data collection
and analysis methods Seaman mentioned but also entire re-
search strategies have been employed in software engineering
research, such as case studies [3] and grounded theory [4]. The
publication of studies using these methods in major venues
like IEEE Transactions on Software Engineering (e.g., [5])
and the International Conference on Software Engineering
(e.g., [6]), along with the success of the Cooperative and
Human Aspects of Software Engineering (CHASE) workshop
(recently converted to a working conference), demonstrates
how these studies gained visibility.

Nevertheless, researchers often employ these methods to
study human and social aspects of software engineering with-
out considering their underlying philosophical underpinnings
as demonstrated by research methods usage analysis, e.g., [4]
and [7]. In this regard, one neglected aspect in software
engineering literature is about research paradigm. A research
paradigm is a set of basic beliefs [8] about the social world
providing “a philosophical and conceptual framework for the
organized study of that world” [9]. Guba and Lincoln [8]
identify three defining characteristics of different paradigms:
ontology, epistemology, and methodology. These aspects can
be mapped to the following questions [10]: what is the nature
of reality, what is the relationship between researcher and that
being researched, and what is the process of research. The
authors analyzed the paradigms employed in social sciences,
namely positivism, post-positivism, critical theory and related,
and constructivism. In addition to those, pragmatism is also
often employed in information systems research [11].

Given these philosophical assumptions, these paradigms
define what valid knowledge and legitimate research [8] are.
Besides that, the explicit adoption of a paradigm could guide
researchers in adopting methods, avoiding the misuses identi-

fied in the Software Engineering literature. Nevertheless, to the
best of our knowledge, there is no study on if and how different
research paradigms have been employed in the research of
human and social aspects of software engineering.

To fill this gap, we analyzed the papers published in the
International Conference on Software Engineering (ICSE) in
the last three years that focus on human and social aspects
of software engineering. Our results indicate a predominance
of pragmatic elements, such as varied research methods,
with an influence from a postpositivistic view of obtaining
general knowledge and mitigating biases. To conclude, we list
research problems on which investigation could be enriched
by employing diverse paradigms.

The remaining of this paper is organized as follows:
Section II briefly summarizes previous studies in software
engineering literature about research methodology, while Sec-
tion III presents a summary of research paradigms. Section IV
explains the research method we employed and Section V, the
results. In Section VI, we discuss our results and foresee re-
search problems that different paradigms could enrich. Finally,
Section VII concludes the paper.

II. RELATED WORK

Although, currently, empirical software engineering domi-
nates the main venues, it was not always this way. We can, at
least partially, attributed this change to some seminal work. For
instance, we can mention the work from Basili and colleagues
promoting the use of controlled experiments. In a seminal
work [12], they write “any scientific theory must be: 1) falsi-
fiable, 2) logically consistent, 3) at least as predictive as other
competing theories, and 4) its predictions have been confirmed
by observations during tests for falsification.” In a similar vein,
Kitchenham and colleagues [13] argued for an empirical-based
software engineering inspired by the counterpart in medicine.

This push for empirical software engineering led to the
use of a plethora of research methods. The lack of training
from software engineering researchers in many applied re-
search methods prompted the emergence of several method-
ological papers in Software Engineering venues. An early
example of this movement was a series of papers on the
Software Engineering Notes about surveys by Pfleeger and
Kitchenham [14]. Since then, several methodological papers
emerged, e.g., Runeson and Höst [3] for case studies, Passos
et al. [15] for ethnographies, and Molleri et al. [16] for
surveys. This issue led to a recent initiative of developing
empirical standards of software engineering research [17].
Other papers mixed methodological guidelines with a critical
view of how researchers have employed the methods, such as
Stol and Fitzgerald [4] for grounded theory. In these reviews,
the authors generally conclude that the methods are often
not appropriately employed, e.g., in the cases of Grounded
Theory [4] and Case Survey [7]. This misuse is present
even for Case Study, as concluded in a recent essay from
Wohlin [18], even though the method has been extensively
applied, and a book on it was published explicitly in the
context of software engineering [19].

Despite the many methodological papers, we are not aware
of published articles about research paradigms in software
engineering research. At most, we found a discussion about
it in a methodological paper. In their paper on grounded the-
ory [4], Stol and Fitzgerald examined the method’s philosophi-
cal foundation. To do so, they briefly presented positivism and
interpretivism and acknowledged that “many studies do not
sit neatly in either paradigms.” They recognized that it was
easy to classify the grounded theory method as interpretivist
because of its use of qualitative data but reminded that it was
developed “due to a desire to build theories more rigorously
and dispassionately by grounding them in objective reality.”
Then, they presented three variants of the method: the first
based on Glaser and Strauss’s original work, the Straussian
version based on the proposal of Strauss and Corbin, and,
finally, a constructivist variant from Charmaz.

It is interesting to observe that the Information Systems
(IS) community, which is close to Software Engineering,
has been discussing research paradigms for thirty years now.
Orlikowski and Baroudi’s early and seminal work [20] re-
viewed a sample of Information Systems studies published
between 1983 and 1988. They concluded that there was only “a
single set of philosophical assumptions” guiding these studies,
that is, positivism. Then, they presented and advocated for
the use of two other paradigms: interpretivism and critical.
After ten years of the publication of this paper, Chen and
Hirschheim [21] performed an analysis of a large number
of Information Systems papers published in the period since
Orlikowski and Baroudi’s paper and concluded that, although
interpretivist studies arose, the large majority (81%) still fit
the positivist perspective. Some years later, Richardson and
Robinson [22] reviewed this study to discuss the lack of studies
based on critical theory.

III. RESEARCH PARADIGMS

In this section, we describe the commonly employed re-
search paradigms in the social sciences. We will base this
discussion on the writings of Guba and Lincoln [8], [23]
and Ponterotto [9]. The authors divide the paradigms into
four categories: positivism, postpositivism, critical theory and
similar, and constructivism-interpretivism. We also include
pragmatism in this study, following Goldkuhl [11]. It is beyond
this paper’s scope to thoroughly define all these paradigms,
and we invite interested readers to consult the original sources.
Nevertheless, we believe a common ground is essential to
our further discussion. Therefore, we present these paradigms’
ontological, epistemological, and methodological perspectives.
Additionally, we present some aspects that distinguish the
paradigms from one another as summarized in Table I.

A. Positivism
From an ontological perspective, adopters of positivism

believe that there is a unique, true reality. This perspective
is called realism (or naive realism to contrast with more
critical variations). From an epistemological perspective, this
paradigm assumes a dual viewpoint where the investigator

TABLE I
SUMMARY OF RESEARCH PARADIGMS BASED ON ONTOLOGY, EPISTEMOLOGY, AND METHODOLOGY (BASED ON [8]).

Paradigm Ontology Epistemology Methodology

Positivism Realism (there is a “true” apprehensible
reality).

Objective, separating object under study
from the researcher.

Mainly experimental, controlling con-
founding factors to verify theories.

Postpositivism
Critical realism (there is a “true” reality
but it is not apprehensible by a fallible
human mind).

Objectivity is not reachable but a goal.
Findings are probably true and are fal-
sifiable.

Critical multiplism. More natural set-
tings and possible use of qualitative
methods.

Constructivism-
Intepretivism

Relativism: the reality is built based
on the interpretation from those that
experience it. Multiple and equally valid
realities.

Knowledge is built on the interaction
between researcher and the study object.

Hermeneutical and dialectic. Based
on the interaction between researchers
and subjects. Importance of qualitative
methods.

Critical theory
and similar

A “true” reality exists but based on
power relationships among different ac-
tors in the society.

Knowledge is based on interpretation
but mediated by values.

Dialectic in nature. The researcher is a
transformative actor and should inform
the subjects about the power structures
so they could fight against it.

Pragmatism
A “true” reality exists but some ele-
ments in the world are created by the
mind of individuals.

Action on the world is responsible for
knowledge creation.

Not constrained by methods. The re-
searcher should use the method most
suitable for the problem at hand.

and the investigated are separated entities. Researchers employ
techniques to reduce bias and threats to validity, so the
findings obtained are true. From a methodological perspec-
tive, hypotheses are formulated in a propositional form and
tested through empirical tests where confounding factors are
controlled.

B. Postpositivism

This paradigm emerged as an answer to the criticism of
positivism. Advocates of postpositivism still believe that there
is a single reality, but it is “only imperfectly apprehendable
because of basically flawed human intellectual mechanisms
and the fundamentally intractable nature of phenomena” [8],
the so-called critical realism. From an epistemological per-
spective, dualism is considered impossible, but objectivity is
the “ideal” [8]. Therefore, researchers employ safeguards to
mitigate threats to this objectivity, such as fitness to previous
knowledge and referral process [8]. However, a key distinction
to positivism is that findings should be falsifiable rather than
verified, as a clear reference to the work of the philoso-
pher Karl Popper [9]. From a methodological perspective,
adopters of this paradigm follow a “refurbished version of
triangulation” to falsify rather than verify hypotheses [8].
They often collect data from natural settings as an answer
to the criticism of lack of realism. Consequently, they started
employing qualitative techniques. A key defining characteristic
for both post and positivism is their goal of explanation for
further prediction and control [9].

A typical example of this paradigm for qualitative studies
is the case study method as described by Eisenhardt [24].
As observed by Welch et al. [25], according to Eisenhardt,
the method is grounded on the aim for “the development
of testable hypotheses and theory which are generalizable
across settings” [24]. The excerpt from the paper of Basili
and colleagues [12], mentioned at the beginning of Section II,
where the authors claimed that theories should be falsifiable,

logically consistent, have predictive power, and have been
tested for falsification, is also a clear instance of this paradigm.

C. Constructivism and interpretivism

Following Guba and Lincoln [8] and Ponterotto [9], we
will discuss constructivism and interpretivism together. The
adopters of these two paradigms share “the goal of under-
standing the complex world of lived experience from the
point of view of those who live it” and the belief that
“to understand this world of meaning, one must interpret
it” [26]. Nevertheless, they present a subtle difference: while
“interpretivism seeks to build knowledge from understand-
ing individuals’ unique viewpoints,” “constructivism views
knowledge as constructed as people work to make sense of
their experience” [27]. For a thorough comparison between
the two paradigms, we invite interested readers to consult
Schwandt [26].

From an ontological perspective, adopters of this paradigm
argue that reality is built based on the interpretation and mental
constructions of the actors involved. Therefore, there is no
single reality, but there are many depending on these actors,
and they are “equally valid” [9]. In extension, researchers are
also subject to interpreting reality, so, from an epistemological
perspective, there are no objective methods. This view can be
traced back to the philosopher Immanuel Kant and his idea
that “you cannot partition out an objective reality from the
person (research participant) who is experiencing, processing,
and labelling the reality” [9]. Findings are created based on
the interaction between the researcher and the object being
studied. A key aspect of this paradigm is the focus on
understanding rather than explaining as in the (post-)positivism
paradigm [26]. From a methodological perspective, it is
adopted a hermeneutical and dialectical perspective where “in-
dividual constructions can be elicited and refined only through
interaction between and among investigator and respondents”

(emphasis from the original) [8]. As a consequence, qualitative
research methods are predominant.

To exemplify this paradigm, we could take Charmaz’ words
when describing his Constructivist Grounded Theory [28,
pp. 13], a method often employed in Software Engineering
studies. She advocates for “the assumption that social reality
is multiple, processual, and constructed” so “we must take the
researcher’s position, privileges, perspective, and interactions
into account as an inherent part of the research reality.”

D. Critical theory and related paradigms
The term critical theory is an umbrella for several related

worldviews such as neo-Marxism, feminism, materialism [8],
and queer theory [23]. The common ground among these
paradigms is their notion that reality is built based on the in-
fluences of economic, political, or other power-related factors.
From an ontological perspective, they accept a reality built by
these power relationships approximating a post-positivist per-
spective. Nevertheless, from an epistemological perspective,
they acknowledge the influence of the researcher’s values on
the findings. A key characteristic of this paradigm is regarding
what Guba and Lincoln called voice. While (post-)positivists
perform the role of “disinterested scientists,” creating knowl-
edge useful for other actors such as policymakers or change
agents, and interpretivists seek knowledge for the sake of un-
derstanding, critical theorists are “transformative intellectuals”
whose work should drive the change. This principle influences
the methodology applied that is dialectic in nature. Besides
building knowledge, it also informs the research targets so
they could transform the structures.

E. Pragmatism
The key distinction between pragmatism and the other

paradigms is its adopters focus on action. In their view, knowl-
edge should be useful for action [11]. Goldkuhl [29] argue for
the existence of three types of pragmatism: functional, refer-
ential, and methodological. These types are related to different
relationships among knowledge and action. In the functional
view, knowledge is for action, that is, it is concentrated on
its usefulness for practice. In the referential view, knowledge
should be about action, that is, researchers should focus their
undertakings on “actors, actions, action-objects, activities, and
practices.” Finally, in the methodological view, knowledge is
generated through action, that is, its development is based on
a “continual interaction between knowing and acting.”

From an ontological perspective, pragmatism accepts the
idea of a unique reality as (post)positivism “but at the same
time emphasizes reason and thought as originators of elements
in the external world” [11]. From an epistemological perspec-
tive, knowledge is created by the action on the world, and
it should be useful for intervention and change [11]. From
a methodological perspective, the paradigm is not restricted
to specific methods but advocates using the most appropriate
method for the problem at hand.

A good example of pragmatism comes from Miles, Huber-
man, and Saldaña, authors of a seminal book of qualitative

methods often cited in Software Engineering papers. In the
fourth edition of the book [30], they write that they label
themselves as “pragmatic realists.” They say they “believe
that social phenomena exist not only in mind but also in
the world,” but they agree with interpretivists “who point out
that knowledge is socially constructed.” Their goal is to make
assertions and build theories “to account for a real world”
because, in their opinion, “human relationships and societies
have unique peculiarities and inconsistencies that make a
realistic approach to understanding them more complex - but
not impossible” (highlight from us).

IV. RESEARCH METHOD

Given the lack of studies on different paradigms underneath
Software Engineering research, we performed an exploratory
literature review to start filling this gap. To guide our study,
we proposed the following research question:

RQ: How are diverse paradigms reflected in the current
research on human and social aspects of software

engineering?

To reach our goal, we decided to analyze a sample of
such studies. Initially, we inspected papers published in ICSE
2020 that focused on human and social aspects of software
engineering. After this initial exploration, we observed that
the number of papers to be analyzed could overwhelm our
analysis capacity. Therefore we decided to limit the number
of venues and years considered. Following what Baltes and
Ralph [31] classify as a purposive sampling strategy, we
purposefully selected the relevant papers presented in the
Technical Track of ICSE in the last three years (2018-2020).
We made this decision given the significance of ICSE in the
software engineering research field, the diversity of papers
accepted in the track, and the maturity these studies present
when compared, for instance, with those from CHASE, a
venue with more relevant papers to our study but often at
an earlier stage of development. More mature studies will
probably present all the aspects relevant to our analysis.

The selection of the papers to be analyzed consisted of
obtaining the list of all documents published in the proceedings
through the IEEE Xplore digital library. We removed those
documents that were not research papers, such as tables
of contents and organizers’ messages. Then, we inspected
the titles and abstracts according to the following inclusion
(exclusion) criteria:

• research papers (excluding, for instance, table of contents
and messages from organizers);

• focused on human or social aspects of software engineer-
ing, that is, studies should focus on phenomena happening
on the practitioners’ individual level or within human re-
lationships occurring in the software engineering process;

• primary studies (excluding literature reviews and map-
ping studies); and

• original conference publications (removing journal-first
studies).

In this step, we followed a conservative approach, and, in
case of doubt, we considered the paper to be further analyzed.
In the next step, we downloaded the papers’ full-text and re-
evaluated them using our inclusion and exclusion criteria. Our
final set consisted of 27 papers (the complete reference list is
at the end of the paper), where five were from 2018, nine from
2019, and 13 from 2020. Figure 1 summarizes this process.

List of published
papers in

ICSE 2018-20
N = 435

Filtering based on title N = 48

Filtering based on
full-text N = 27

Removing
non-research papers N = 391

Fig. 1. The paper selection process.

The analysis consisted of identifying, in the papers, ele-
ments from the paradigms through a process of coding [2].
Instead of using a pre-defined set of codes, we employed an
integrated approach [32] where we defined an initial list of
aspects to observe on the studies but without a set of specific
codes. The codes emerged during the analysis, and, through
constant comparison, they were merged, discarded, or new
ones were created. Our initial list of aspects consisted of:

• Explicit claims: in this aspect, we observed if papers
explicitly stated their adherence to a specific paradigm.

• Research questions: given the different ontology and
epistemology perspectives, we might expect diverse goals
presented in research questions. Given the objective of
universal knowledge in (post)positivistic paradigms, re-
searchers employing this paradigm focus on general re-
search questions. Besides that, they could base their stud-
ies on hypotheses derived from previous theories. Mean-
while, for constructivist-interpretivist paradigms, there
should be a preference for contextual research questions.

• Research methods: as discussed in the previous section,
the ontological and epistemological stances from different
paradigms lead to diverse methodological perspectives.
(Post)positivists employ methods that isolate the re-

searcher from the object of study, while the constructivist-
interpretivist encourages interaction.

• Threats to validity: similar to research methods, depend-
ing on the paradigm, researchers have different concerns
regarding their studies’ validity.

Besides these points, we also extracted from the studies
the aspects that were not related to the initial list, pointing
to an evident influence of other paradigms. For instance, we
can detect the influence of pragmatism if a study’s goal is
implementing change in the studied environment.

V. RESULTS

Before presenting the coding results, it is essential to
describe the topics addressed by the reviewed studies. Most of
the analyzed papers (12) investigated collaboration aspects of
software development. These elements ranged from intra-team
matters such as code reviews to developer communities like
those in open source software. Seven papers focused on as-
pects of developers’ work, including coding proficiency [P1],
security [P2] and programming rationale [P3]. We classified
two papers under developers’ emotions [P4] and biases [P5]
because they regard human factors per se and not related
to work practices. Another two papers focus on developers’
training: programming language learning [P6] and tool adop-
tion [P7]. Finally, one paper [P8] investigated the accessibility
of apps. Table II summarizes the research topics investigated
by the papers. Besides that, it is interesting to notice that a
recurrent domain among the investigated problems was open
source software: nine studies focused on this domain.

TABLE II
RESEARCH TOPICS ORDERED BY THE NUMBER OF OCCURRENCES.

Topic Papers

Collaboration
aspects

[P9] [P10] [P11] [P12] [P13] [P14] [P15] [P16]
[P17] [P18] [P19] [P20] (12)

Developers’ way of
work [P21] [P2] [P22] [P23] [P3] [P1] [P24] (7)

Gender issues [P25] [P26] [P27] (3)

Developers’ emo-
tions and biases [P5] [P4] (2)

Learning and tool
adoption [P6] [P7] (2)

Accessibility [P8] (1)

In the following sub-sections, we present the results of our
analysis organized by the list of aspects.

A. Explicit claims
In our final list of analyzed papers, none of them ex-

plicitly claimed to adhere to a specific paradigm. We only
noticed one paper, which was excluded in the full-text analysis
phase because it is focused on a development practice, not
on human factors, that has an explicit claim related to the
research paradigm it followed. Sedano et al. [6] performed
a constructive grounded theory to understand the product

backlog in a company. Besides explicitly claiming the use
of the constructive version of the method, the authors also
discussed aspects of validity common in this paradigm, like
transferability.

B. Research questions
Regarding this aspect, the most common way to repre-

sent the research goal was using general research questions,
that is, aimed to uncover a universal truth. These questions
were present in 17 studies. Some examples are “What mo-
tivates software professionals to participate in technology
meetups?” [P10] or “What types of cognitive biases do devel-
opers frequently experience?” [P5]. In four studies, instead of
developing research questions, researchers employed previous
theories and existing knowledge to develop hypotheses to
be tested. For instance, Murphy-Hill and colleagues [P7]
investigated if a practice of preparing physical newsletters to
developers about new tools, the so-called Testing on the Toilet,
increased their adoption of these tools. To guide their study, the
authors used the following hypothesis: “Testing on the Toilet
increases usage of advertised developer tools.”

In only three studies ([P9], [P18], and [P24]), researchers
employed questions focused on a specific context. In two
studies ([P21] and [P19]), there were no explicit research
questions, and the authors declared to be conducting an ex-
ploratory study. Finally, one study ([P25]) evaluated a method
and, therefore, its research questions focused on the method.

C. Research methods
Regarding the research methods used, many of the analyzed

papers (10) claimed to use a mixed-methods approach. For
instance, Egelman and colleagues [P9] performed a survey
with 1317 developers and analyzed code review logs to predict
negative feelings about the process. To investigate the influ-
ence of news aggregators on developer communities, Aniche
et al. [P18] employed interviews, survey, and content analysis.

Some studies used generic terms and did not make explicit
claims on the research methods employed. Three studies
claimed to perform an empirical study and another three a
field study. Two studies used the term “qualitative study.” One
used “quantitative study.” Another one claimed to conduct “a
large scale study.”

In contrast, some studies did declare to use a specific
method. Two papers used the term “survey” as the research
method. Another two used grounded theory, and with just one
occurrence each, there was action research, case study, and
controlled experiment. Table III summarizes these results.

1) Research techniques: Since the overall methods did not
give us much useful information to evaluate the worldviews
that influence the studies, we analyzed the data collection and
analysis techniques used in the studies. Since many studies,
especially those using mixed-methods, utilize more than one,
the sum of occurrences is above the number of studies.
Regarding data collection, the most common technique, with
14 occurrences, was applying a questionnaire, which was often
called a survey in the papers. We will not use this term to avoid

TABLE III
RESEARCH METHODS AS CLAIMED IN THE PAPER ORDERED BY THE

NUMBER OF OCCURRENCES.

Research methods Papers

Mixed-methods study [P9] [P10] [P2] [P12] [P6] [P23] [P16]
[P7] [P17] [P18] (10)

Empirical study [P4] [P8] [P1] (3)

Field study [P5] [P3] [P20] (3)

Qualitative study [P21] [P15] (2)

Grounded theory [P13] [P22] (2)

Survey [P14] [P26] (2)

Action research [P25] (1)

Case study [P19] (1)

Controlled experiment [P11] (1)

Large scale study [P24] (1)

Quantitative study [P27] (1)

confusion with the comprehensive research method. Then, in
13 studies, researchers performed interviews with subjects.
In 13 studies, researchers collected artifacts to be further
analyzed, including log data, e.g., [P9], or mining repositories
like in [P12]. In five studies, researchers observed subjects in
their working environments. For instance, Chattopadhyay et
al. [P3] mentioned using the fly-on-the-wall technique. In two
studies, [P2] and [P20], researchers asked subjects to perform
some form of tasks. Fig. 2 summarizes these results.

Fig. 2. Number of the occurrences of data collection techniques identified in
the reviewed studies.

Regarding analysis techniques, the most common, present
in 12 studies, was the use of some forms of statistical analysis,
often performing statistical tests. In seven papers, researchers
performed some kind of coding, including inductive coding,
e.g., [P9], or thematic analysis, e.g., [P23]. Two studies, [P21]
and [P1]) employed open card sorting. Fig. 3 summarizes these
results.

D. Validity discussion
In the discussion of validity, almost all papers employed a

perspective influenced by realism. The most common manner

Fig. 3. Number of the occurrences of data analysis techniques identified in
the reviewed studies.

(present in eight studies) was pinpointing threats to the triad
consisted of construct, internal, and external validity. In other
cases, authors only mentioned a subset like construct and ex-
ternal validity ([P24]) or external and internal validity ([P25]).
In another study [P4], besides the triad, researchers also
mentioned conclusion validity. Construct validity is related
to the extent that the measurements employed by researchers
represent the constructs they have in mind. Internal validity
is related to causal inferences and represents if the research
claims that a factor is determined by another when, in reality, a
third factor, not considered in the study, is responsible. Finally,
external validity is related to the applicability of the results to
other contexts. In this sense, external validity is identical to
the second most common aspect discussed, generalizability,
considered in six studies. For instance, in a study about quasi-
contributors on open source software, Steinmacher et al. [P17]
argued that “when quantitatively analyzing data from the
selected project,” they “used statistical methods to mitigate the
threats of generalizing data based on our personal hypothesis.”
In four studies, the authors’ concern was to mitigate biases.
In three studies, surveys were employed to generalize results.

Only one study, [P15], employed interpretivistic constructs
to analyze threats to validity. The authors discussed credibility,
transferability, dependability, and confirmability. Credibility
is the counterpart of internal validity and is related to the
results’ reliability and conformance to the data collected.
Transferability concerns the possibility of transfer the results
to similar contexts and, as so, is a counterpart of external
validity. Dependability is to which extent the results depend
on the specific research and, as such, is similar to reliability.
Finally, confirmability concerns if the results represent the
view of participants and not the researchers’. Besides that,
two other studies, [P5] and [P3], discussed why their results
were transferable to other contexts, which is a common
interpretivistic concern. Table IV summarizes these results.

E. Specific elements

In this section, we present aspects identified in the analyzed
papers that, although not specifically related to elements

TABLE IV
VALIDITY DISCUSSION PRESENT IN THE ANALYZED PAPERS ORDERED BY

THE NUMBER OF OCCURRENCES.

Validity discussion Papers

R
ea

lis
m

in
flu

en
ce

s

Construct-External-
Internal validity

[P21] [P2] [P11] [P14] [P1]
[P26] [P27] [P19]

Generalizability [P9] [P10] [P21] [P5] [P17]
[P18]

Mitigate biases [P10] [P5] [P8] [P3]

Construct and External
validity [P24]

External and Internal
validity [P25]

Construct-External-
Internal-Conclusion
validity

[P4]

Surveys to generalize
results [P22] [P17] [P18]

In
te

rp
re

tiv
is

m

in
flu

en
ce

s Transferable results [P5] [P3]

Credibility-
Transferability-
Dependability-
Confirmability

[P15]

described above, indicate a specific paradigm’s influence.
Regarding (post)positivism, the only but recurrent aspect

observed was the use of existent theories. For instance, in a
study about the fairness perception of code reviews, German
et al. [P19] employed fairness theory. Even in a grounded
theory study, for which methodological papers suggest not to
be biased by previous results [4], Danilova et al. [P22] based
their study about security warnings to developers on previous
work. This study also employed a survey to test the theory.
In the paper’s words: “we conducted a GT study based on
Charmaz with theoretical sampling to get a broad overview of
the problem space. We followed up this qualitative work with
a quantitative survey to test the developed themes and our
explanatory theory.” It is interesting to notice that Charmaz’s
version of the method is of constructivist influence [4].

Although not so strong as for positivist elements, we also
identified some interpretivist influences. For instance, three
studies ([P15], [P26], and [P19]) focused on developers’ per-
ceptions on diverse aspects. For instance, to understand why
code review worked for open source communities, Alami et
al. [P15] wanted “to dig deeply into the mindset of participants
in this inherently human process that relies heavily on commu-
nication skills; that involves feedback, critique and rejection on
daily basis; and that exposes power and decision hierarchies
in communities.” Nevertheless, the common aspect, present
in 16 studies, generally associated with this paradigm [9], is
the use of subjects’ quotes, most commonly from interviews,
such as in [P9] and [P15], and also open-ended questions in
questionnaires, as in [P2], or from other analyzed artifacts such
as StackOverflow answers, as in [P21].

Regarding pragmatism, a common aspect is to show the

usefulness of the results to practitioners. For instance, Alami
et al. [P15] performed an action research study about code
reviews in open source software projects, and “formulate 20
proposals for how what [the authors] know about hacker
ethics and human and social aspects of code review, could be
exploited to improve the effectiveness of the practice in soft-
ware projects.” In their action research study to foster gender-
inclusiveness in software development teams, Hilderbrand et
al. [P25] presented the teams “insights and experiences in the
form of 9 practices, 2 potential pitfalls, and 2 open issues [...].”

Regarding the critical theory paradigm, the influence is
much smaller. We could detect it in the motivation of one
study about gender issues. Hilderbrand et al. [P25] started
their paper with the following: “Software has repeatedly failed
diverse populations, falling short of aiding their productivity
or even being usable by some populations.”

VI. DISCUSSION

Our results show that analyzed papers do not explicitly state
the research paradigms that influence them. This dearth could
indicate the lack of discussion of this aspect among software
engineering researchers, which corroborates the need for more
studies discussing research paradigms in Software Engineering
research. Clear adherence to a paradigm is essential for readers
and reviewers to assess if the employed methods are adequate
and the study’s conclusions, trustworthy. Nevertheless, the
elements identified in the studies reveal an implicit pragmatic
worldview strongly influenced by a postpositivistic perspec-
tive. Several elements corroborate this conclusion. From the
angle of research questions, it was clear a predominance of
aiming universal truths. Similarly, regarding threats to validity,
researchers aimed to mitigate issues that would prevent their
results from being general. To do so, they also acted to prevent
biases. From a methodological perspective, it is interesting
to see the predominance of mixed-methods studies. These
combinations could be a consequence of the desire to study
more natural settings as one of the criticisms of positivism
mitigated by post-positivism. Nevertheless, it could also be
related to a pragmatic view of using the most adapted method
to investigate the problem at hand. Still, another interpretation
is the need for quantitative data, usually in the form of a
survey or artifact analysis, to generalize results obtained from
qualitative data. These aspects could also explain the frequency
at which researchers employ interviews in their studies and use
quotes from them (or other sources) to illustrate their reports.

Our findings are in line with the results Engstrom and col-
leagues [33] obtained when using the design science research
(an essentially pragmatic method) lenses to evaluate ICSE
papers. The authors observed that most of the papers fitted
these lenses. This pragmatic tendency is visible through the
three types proposed by Goldkuhl [29]. From a functional
perspective, we could observe that most authors argued the
value of their studies to real problems. In several studies, the
focuses were on the actions performed by actors, generally
software developers, indicating a referential view. Finally, the
plethora of different research methods employed, including

those generally associated with constructivist-interpretivist tra-
ditions such as grounded theory and interviews, point to a
methodological pragmatic view.

We must admit that we were not surprised by the lack
of papers employing constructivist-interpretivist or critical
theory paradigms. Nevertheless, during our analysis, we saw
some opportunities for researchers wanting to employ different
paradigms. Our goal is not to advocate that these paradigms
are superior for these topics when compared to post-positivism
or pragmatism. Instead, we would like to call the attention of
researchers, reviewers, program committee chairs, and editors
on alternative possibilities to perform research that could
enrich the Software Engineering body of knowledge.

Regarding the constructivist-interpretivist paradigm, the
scarcity of studies following this paradigm indicates a need to
encourage more such studies. In our analysis, it was clear the
importance of predicting theories or useful results. Studies to
deeply understand a particular phenomenon would be valuable
to our field.

A clear possibility for critical theory is the emerging field
of research on gender issues in software development. Cur-
rently, studies mainly described the problem using a more
conventional, detached view. Researchers could take a critical
view and start trying to change the status quo, for instance,
acting towards increasing women’s participation in software
development and reducing the bias against them. Another
interesting topic is ethics. Even though not found in our results,
it is an increasing interest of our community that could take
advantage of critical theory.

VII. CONCLUSIONS

Software Engineering is a multidisciplinary research field
where diverse problems coexist, ranging from programming
languages to developers’ emotions. This diversity led to the
employment of a wide range of research methods, including,
especially for human and social aspects, some techniques
borrowed from social sciences. Unfortunately, these methods
are employed without proper consideration of the underlying
philosophical assumptions. Previous work has shown that this
phenomenon led to many methods being used, not adhering
to their guidelines properly. To the best of our knowledge, no
study in the Software Engineering literature has investigated
the employment of different research paradigms. To start filling
this gap, we analyzed the papers published in the Technical
Track of ICSE in the last three years regarding several aspects
influenced by research paradigms. Our results indicate that,
although researchers do not explicitly claim the underlying
research paradigms they follow, the predominant view is
pragmatic by focusing on “real” problems and employing
diverse methods, and with a strong influence of post-positivism
represented by a focus on general results and mitigating threats
to a study’s validity.

Our results were limited to the last three years of ICSE, and
further investigations could analyze other venues, especially
journals, that could present a broader range of topics. Besides
that, we restricted our study to published papers. Future work

could survey or interview researchers to better understand
why they performed the studies in a given way and whether
they consider future studies with a diverse paradigm, and the
reasons behind those choices.

We expect that this paper acts as a call for even more
diverse research on human and social factors of Software
Engineering. We discussed some possible topics that could
profit from other paradigms, especially critical theory. From
a meta-research perspective, a possible avenue for further
analysis is the discussion of threats to validity. A section about
this aspect is almost always present in research papers, but no
relation is made to the underlying researchers’ worldviews.
From an educational perspective, we expect that more studies
like ours could bring attention to research paradigms in the
existing courses of empirical software engineering for graduate
students.

ANALYZED PAPERS

[P1] X. Xia, Z. Wan, P. S. Kochhar, and D. Lo, “How Practitioners Perceive
Coding Proficiency,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), vol. 2019-May. IEEE, 2019, pp.
924–935.

[P2] D. V. D. Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Petre,
M. Levine, J. Towse, and A. Rashid, “Schrodinger’s security: Opening
the box on app developers’ security rationale,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 149–160.

[P3] S. Chattopadhyay, N. Nelson, Y. Ramirez Gonzalez, A. Amelia Leon,
R. Pandita, and A. Sarma, “Latent Patterns in Activities: A Field
Study of How Developers Manage Context,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), vol. 2019-
May. IEEE, 2019, pp. 373–383.

[P4] D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing devel-
opers’ emotions while programming,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. New York,
NY, USA: ACM, 2020, pp. 666–677.

[P5] S. Chattopadhyay, N. Nelson, A. Au, N. Morales, C. Sanchez, R. Pan-
dita, and A. Sarma1, “A tale from the trenches: Cognitive biases
and software development,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 75–86.

[P6] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. New York, NY, USA: ACM, 2020, pp. 691–701.

[P7] E. Murphy-Hill, E. K. Smith, C. Sadowski, C. Jaspan, C. Winter,
M. Jorde, A. Knight, A. Trenk, and S. Gross, “Do Developers Discover
New Tools On The Toilet?” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), vol. 2019-May. IEEE,
2019, pp. 465–475.

[P8] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in Android
apps,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. New York, NY, USA: ACM, 2020, pp. 1323–
1334.

[P9] C. D. Egelman, E. Murphy-Hill, E. Kammer, M. M. Hodges, C. Green,
C. Jaspan, and J. Lin, “Predicting developers’ negative feelings about
code review,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 174–185.

[P10] C. Ingram and A. Drachen, “How sofware practitioners use informal
local meetups to share sofware engineering knowledge,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineer-
ing, 2020, pp. 161–173.

[P11] D. Spadini, G. Çalikli, and A. Bacchelli, “Primers or reminders?”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. New York, NY, USA: ACM, 2020, pp. 1171–
1182.

[P12] S. Zhou, B. Vasilescu, and C. Kästner, “How has forking changed in
the last 20 years?” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings. New
York, NY, USA: ACM, 2020, pp. 268–269.

[P13] F. Zieris and L. Prechelt, “Explaining pair programming session
dynamics from knowledge gaps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. New York, NY,
USA: ACM, 2020, pp. 421–432.

[P14] A. Barcomb, K.-J. Stol, D. Riehle, and B. Fitzgerald, “Why Do
Episodic Volunteers Stay in FLOSS Communities?” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), vol.
2019-May. IEEE, 2019, pp. 948–959.

[P15] A. Alami, M. Leavitt Cohn, and A. Wasowski, “Why Does Code
Review Work for Open Source Software Communities?” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), vol. 2019-May. IEEE, 2019, pp. 1073–1083.

[P16] H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu,
“Going Farther Together: The Impact of Social Capital on Sustained
Participation in Open Source,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), vol. 2019-May. IEEE,
2019, pp. 688–699.

[P17] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost There:
A Study on Quasi-Contributors in Open Source Software Projects,” in
Proceedings of the 40th International Conference on Software Engineer-
ing. New York, NY, USA: ACM, 2018, pp. 256–266.

[P18] M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M.-A. Storey,
and M. A. Gerosa, “How modern news aggregators help development
communities shape and share knowledge,” in Proceedings of the 40th
International Conference on Software Engineering. New York, NY,
USA: ACM, 2018, pp. 499–510.

[P19] D. M. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and
K. Inoue, “”Was my contribution fairly reviewed?”,” in Proceedings of
the 40th International Conference on Software Engineering. New York,
NY, USA: ACM, 2018, pp. 523–534.

[P20] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Hor-
vath, C. Hill, L. Simpson, N. Patil, A. Sarma, and M. Burnett, “Open
source barriers to entry, revisited,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering. New York, NY, USA:
ACM, 2018, pp. 1004–1015.

[P21] M. Lamothe and W. Shang, “When apis are intentionally bypassed: An
exploratory study of apiworkarounds,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp. 921–
924.

[P22] A. Danilova, A. Naiakshina, and M. Smith, “One size does not fit
all,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. New York, NY, USA: ACM, 2020, pp. 136–
148.

[P23] F. Sarker, B. Vasilescu, K. Blincoe, and V. Filkov, “Socio-Technical
Work-Rate Increase Associates With Changes in Work Patterns in Online
Projects,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 936–947.

[P24] M. Claes, M. V. Mäntylä, M. Kuutila, and B. Adams, “Do programmers
work at night or during the weekend?” in Proceedings of the 40th
International Conference on Software Engineering. New York, NY,
USA: ACM, 2018, pp. 705–715.

[P25] C. Hilderbrand, C. Perdriau, L. Letaw, J. Emard, Z. Steine-Hanson,
M. Burnett, and A. Sarma, “Engineering gender-inclusivity into soft-
ware,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. New York, NY, USA: ACM, 2020, pp. 433–
444.

[P26] A. Lee and J. C. Carver, “FLOSS Participants’ Perceptions About Gen-
der and Inclusiveness: A Survey,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), vol. 2019-May. IEEE,
2019, pp. 677–687.

[P27] N. Imtiaz, J. Middleton, J. Chakraborty, N. Robson, G. Bai, and
E. Murphy-Hill, “Investigating the Effects of Gender Bias on GitHub,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), vol. 2019-May. IEEE, 2019, pp. 700–711.

REFERENCES

[1] R. Connolly, “Why computing belongs within the social sciences,”
Communications of the ACM, vol. 63, no. 8, pp. 54–59, jul 2020.

[2] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Transactions on Software Engineering, vol. 25, no. 4,
pp. 557–572, 1999.

[3] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, apr 2009.

[4] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research,” Proceedings of the 38th International Conference
on Software Engineering - ICSE ’16, no. Aug, pp. 120–131, 2016.

[5] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek, and
P. Abrahamsson, “Software Development in Startup Companies: The
Greenfield Startup Model,” IEEE Transactions on Software Engineering,
vol. 42, no. 6, pp. 585–604, jun 2016.

[6] T. Sedano, P. Ralph, and C. Peraire, “The Product Backlog,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), no. Section IV. IEEE, may 2019, pp. 200–211.

[7] J. Melegati and X. Wang, “Case Survey Studies in Software Engineering
Research,” in Proceedings of the 14th ACM / IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM).
New York, NY, USA: ACM, oct 2020, pp. 1–12.

[8] E. G. Guba and Y. S. Lincoln, “Competing paradigms in qualitative
research,” in Handbook of Qualitative Research, 1994, pp. 163–194.

[9] J. G. Ponterotto, “Qualitative research in counseling psychology: A
primer on research paradigms and philosophy of science,” Journal of
Counseling Psychology, vol. 52, no. 2, pp. 126–136, 2005.

[10] J. Creswell, Qualitative Inquiry and Research Design: Choosing Among
Five Approaches. SAGE Publications, 2012.

[11] G. Goldkuhl, “Pragmatism vs interpretivism in qualitative information
systems research,” European Journal of Information Systems, vol. 21,
no. 2, pp. 135–146, 2012.

[12] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through
families of experiments,” IEEE Transactions on Software Engineering,
vol. 25, no. 4, pp. 456–473, 1999.

[13] B. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based software
engineering,” in Proceedings. 26th International Conference on Software
Engineering. IEEE Comput. Soc, 2004, pp. 273–281.

[14] S. L. Pfleeger and B. A. Kitchenham, “Principles of Survey Research
Part 1: Turning Lemons into Lemonade,” ACM SIGSOFT Software
Engineering Notes, vol. 26, no. 6, pp. 16–18, 2001.

[15] C. Passos, D. S. Cruzes, T. Dybå, and M. Mendonça, “Challenges
of applying ethnography to study software practices,” International
Symposium on Empirical Software Engineering and Measurement, no.
Dcc, pp. 9–18, 2012.

[16] J. S. Molleri, K. Petersen, and E. Mendes, “Survey Guidelines in Soft-
ware Engineering,” Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement -
ESEM ’16, pp. 1–6, 2016.

[17] P. Ralph et al., “Empirical standards for software engineering research,”
2021.

[18] C. Wohlin, “Case study research in software engineering—it is a case,
and it is a study, but is it a case study?” Information and Software
Technology, vol. 133, p. 106514, 2021.

[19] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering: Guidelines and Examples, H. Baumeister,
H. Lichter, and M. Riebisch, Eds. Hoboken, NJ, USA: John Wiley
& Sons, Inc., mar 2012, vol. 283.

[20] W. J. Orlikowski and J. J. Baroudi, “Studying information technology
in organizations: Research approaches and assumptions,” Information
Systems Research, vol. 2, no. 1, pp. 1–28, 1991.

[21] W. Chen and R. Hirschheim, “A paradigmatic and methodological
examination of information systems research from 1991 to 2001,”
Information Systems Journal, vol. 14, no. 3, pp. 197–235, jul 2004.

[22] H. Richardson and B. Robinson, “The mysterious case of the missing
paradigm: A review of critical information systems research 1991-2001,”
Information Systems Journal, vol. 17, no. 3, pp. 251–270, 2007.

[23] Y. S. Lincoln and E. G. Guba, “Paradigmatic controversies, contradic-
tions and emerging confluences,” Handbook of Qualitative Research,
2nd ed, pp. 163–189, 2000.

[24] K. M. Eisenhardt, “Building theories from Case Study Research,” The
Academy of Management Review, vol. 14, no. 4, pp. 532–550, 1989.

[25] C. Welch, R. Piekkari, E. Plakoyiannaki, and E. Paavilainen-Mäntymäki,
“Theorising from case studies: Towards a pluralist future for inter-
national business research,” Journal of International Business Studies,
vol. 42, no. 5, pp. 740–762, 2011.

[26] T. Schwandt, “Constructivist, Interpretivist approaches to human in-
quiry,” in The Landscape of Qualitative Research : Theories and Issues,
N. K. Denzin and Y. S. Lincoln, Eds., 1998, pp. 221–259.

[27] L. E. Tomaszewski, J. Zarestky, and E. Gonzalez, “Planning qualitative
research: Design and decision making for new researchers,” Interna-
tional Journal of Qualitative Methods, vol. 19, pp. 1–7, 2020.

[28] K. Charmaz, Constructing Grounded Theory, ser. Introducing Qualitative
Methods series. SAGE Publications, 2014.

[29] G. Goldkuhl, “What Kind of Pragmatism in Information Systems
Research?” AIS SIG PRAG INAUGURAL meeting, no. 1986, pp. 1–6,
2008.

[30] M. Miles, A. Huberman, and J. Saldana, Qualitative Data Analysis: A
Methods Sourcebook. SAGE Publications, 2019.

[31] S. Baltes and P. Ralph, “Sampling in software engineering research: A
critical review and guidelines,” 2020.

[32] D. S. Cruzes and T. Dyba, “Recommended Steps for Thematic Synthesis
in Software Engineering,” 2011 International Symposium on Empirical
Software Engineering and Measurement, no. 7491, pp. 275–284, 2011.

[33] E. Engström, M.-A. Storey, P. Runeson, M. Höst, and M. T. Baldassarre,
“How software engineering research aligns with design science: a
review,” Empirical Software Engineering, vol. 25, no. 4, pp. 2630–2660,
jul 2020.

