Exploring potential implications of intelligent tools for human
aspects of software engineering

Jorge Melegati
jorge.melegati@unibz.it
Free University of Bozen-Bolzano
Bolzano, Italy

Afonso Sales
afonso.sales@pucrs.br
PUCRS
Porto Alegre, Brazil

ABSTRACT

Background. The emergence of tools based on artificial intelligence
(AI) to support software development suggests an overhaul on how
developers program and interact among themselves. This disrup-
tion might bring challenges regarding human and social aspects
of the software development process. Objective. This paper is a
first exploration of the consequences of Al-based tools for software
development teams and their members. Method. We conducted a
social science fiction exercise, a sort of thought experiment, nar-
rating two fictional stories about a futuristic software company
employing Al-based tools. Then, we evaluated the plausibility of
one of the scenarios through a qualitative experiment with 38 stu-
dents to observe their perception regarding the use of Al-based
tools. Results. The stories suggest potential challenges related to
the adoption of these tools: a change on how developers perceive
themselves, a clash between quantitative and qualitative worker
contribution assessment, and the training of future developers to
handle the imminent changes on their profession. In the qualitative
experiment, we collected evidence supporting negative feelings,
such as lack of trust and control and fear of being replaced. We also
identified other attitudes and perceptions of developers, such as
positive feelings towards Al-based tools. Conclusion. We identified
several aspects that might influence the adoption of Al-based tools
and their implications for individuals involved. They should be
further investigated and represent a challenge for the research on
human aspects of software engineering. We also demonstrated the
use of social science fiction to explore novel research problems.

CCS CONCEPTS

« Software and its engineering — Software development pro-
cess management; « Social and professional topics — Profes-
sional topics.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHASE 24, April 14-15, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0533-5/24/04.

https://doi.org/10.1145/3641822.3641877

Nicolas Nascimento
nicolas.nascimento@pucrs.br
PUCRS
Porto Alegre, Brazil

Rafael Chanin
rafael.chanin@pucrs.br
PUCRS
Porto Alegre, Brazil

Igor Wiese
igor@utfpr.edu.br
Federal University of Technology -
Parana (UTFPR)
Campo Mourio, Brazil

KEYWORDS

Al for SE, social science fiction, human aspects of software devel-
opment, qualitative experiment

ACM Reference Format:

Jorge Melegati, Nicolas Nascimento, Rafael Chanin, Afonso Sales, and Igor
Wiese. 2024. Exploring potential implications of intelligent tools for human
aspects of software engineering. In 2024 IEEE/ACM 17th International Con-
ference on Cooperative and Human Aspects of Software Engineering (CHASE
'24), April 14-15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3641822.3641877

1 INTRODUCTION

Although software development emerged less than a century ago, it
has experienced several changes in how its activities are performed
from technical and organizational perspectives. In the beginning,
around 1960, individuals developed small programs based on an
elementary understanding of control flows using mnemonics [37].
After 60 years, the process evolved through developing higher-level
languages, abstract architectures, and larger systems but also with
expanding development teams [37, 38], sometimes spread around
the globe. In this evolution process, several tools or approaches
changed the way developers as human beings interact among them-
selves and with technology. For instance, Integrated Development
Environments (IDE) continuously add new features to automatize
repetitive tasks, such as refactoring [28], along with agile meth-
ods [1] and global development teams [15] that brought several
changes and new challenges for how developers collaborate.

However, these changes seem minor compared to the impeding
disruptive arrival of a new set of tools enabled by artificial intel-
ligence (AI). An example is the launch of GitHub Copilot!, a tool
that synthesizes code based on machine learning (ML) algorithms
trained with code from repositories hosted in the GitHub platform.
Another has been the use of OpenAI’s ChatGPT? to support soft-
ware engineering (SE) tasks. These tools are probably the first of a
series of productivity enhancers enabled by AI and ML. This fore-
cast does not surprise those who observe the prominence of this
topic in premier venues for SE research.

Although research in SE has focused on how to use Al to enhance
development activities [8, 9, 46], it has neglected the impact of this

!https://copilot.github.com/
Zhttps://chat.openai.com/

https://orcid.org/0000-0003-1303-4173
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3641822.3641877
https://doi.org/10.1145/3641822.3641877

CHASE 24, April 14-15, 2024, Lisbon, Portugal

usage on individuals and social groups, i.e., developers, teams, and
organizations. In this paper, to demonstrate potential problems, we
conducted a social science fiction exercise, a sort of thought exper-
iment, to explore the potential implications of Al-based tools for
individuals involved in the software development process. Based
on these stories, we identified a set of propositions describing po-
tential issues of Al-based tools to developers and teams. Then, we
evaluated two of the propositions, namely the fear of being replaced
by tools and the influence of these tools on how developers per-
ceive themselves, through a qualitative experiment. It consisted of
proposing a programming problem for a group of students in which
Al-based tools usage was controlled. We applied questionnaires to
the participants and qualitatively analyzed the results. Based on
that, we discussed the potential implications of Al-based tools for
human aspects of SE and also the use of the social science fiction
method for SE research.

Our contributions are three-fold: 1) a list of propositions regard-
ing possible impacts of Al-based tools on human and social aspects
of SE; 2) some pieces of evidence to support two propositions re-
garding how developers perceive themselves and their feeling of
dependence towards the tools; and 3) an approach to employ the
social science fiction for SE research by using it to generate propo-
sitions to be further evaluated with empirical studies.

The remainder of this paper is organized as follows. Section 2
presents the background and related work. In Section 3, we present
the social science fiction study, describing the method, the stories
produced, and the propositions reached. Section 4 presents the
qualitative experiment we conducted and Section 5 describes the
results obtained. In Section 6, we discuss our results in relation to
the existing literature. Finally, Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK

In her seminal paper about an engineering discipline for software [37]
published in 1990, and a follow-on paper [38] published in 2009,
Mary Shaw describes how software engineering and the research
problems associated with it evolved since the creation of the first
computers. From the beginning until around 1965, programming
consisted of small programs built in any way possible with sim-
ple structures. Around 1970, the focus shifted to programming
in the small and the first high-level languages emerged. Around
1980, the programming-in-the-large began with complex and con-
tinuously executed systems. Around 1990, abstract architectures
guiding software design emerged. From an organizational perspec-
tive, the complexity also changed from individual efforts to team
efforts to distributed teams. The emergence of the World Wide
Web led, around 2000, to an explosion of not only consumers but
also producers of applications. In the 2009 paper, she speculated
that challenges would emerge on the boundaries of very complex
systems and users. In her own words: “Problems facing software
engineers are increasingly situated in complex social contexts, and
delineating the problems’ boundaries is increasingly difficult”
Shaw’s speculation was right, and the human and social con-
sequences of software systems are increasingly noticed. In a 2020
Communications of ACM paper [4], Connolly presents his opin-
ion that computer science should be closer to social sciences. He
argues that researchers could cope better with the complexity of

Melegati et al.

subjects computer science is facing using the “methodological and
theoretical pluralism” from the social sciences rather than relying
on a “single methodological approach for making and evaluating
knowledge claims” from natural and engineering sciences. This call
is echoed by Mendez-Fernandez et al. [23] that stress the increased
need for interdisciplinary research in software engineering, espe-
cially “for the investigation of social, cultural, and human-centric
aspects of software engineering” However, in SE research, although
the use of other paradigms, such as interpretivism-constructivism,
has started, the majority of studies still rely on a pragmatic para-
digm heavily influenced by post-positivism [22].

Recently, the rise of Al-enabled software led researchers to fo-
cus on the impacts these systems have on the user, specifically,
Al ethics, i.e., the ethical considerations about the Al software for
users and the potential responsibilities developers have [18, 41, 44].
However, in industry, this concern is still in its infancy, and Al
has been considered just another feature [41]. Bryson and Win-
field [2] describe several initiatives from the industry, professional
associations, and government towards ethical standards for intelli-
gent systems, such as the British Standard 8611:2016 “Robots and
Robotic Devices: Guide to the Ethical Design and Application of
Robots and Robotic Systems.” The authors, in special, are working
on a transparency standard as part of a larger initiative from IEEE.
In this draft work, they identify five categories of stakeholders:
users, safety certification agencies, accident investigators, lawyers
or expert witnesses, and broader society. An autonomous system
should be transparent for each class of stakeholder in a different
way and for different reasons.

Not only has software implications for humans, but also individ-
ual and social aspects influence the software development process.
In this sense, several studies have investigated the influence of hu-
man aspects on the productivity of software development processes.
In a survey with 317 responses, Graziotin et al. [11] identified 42
consequences of developers’ unhappiness and 32 of happiness. The
most common consequences of unhappiness were external, includ-
ing low productivity and code quality, but also consequences to
the developer’s own being, including low cognitive performance
and mental unease and disorder. Another important aspect of soft-
ware development teams is turnover intention. When a member
leaves the team, there might be tacit knowledge that is lost with
that person. Besides that, the team will need to spend time and
resources to recruit and train a substitute. In this regard, job satis-
faction is associated with a lower turnover intention [36]. These
results explain why research in human aspects of software engi-
neering expanded, focusing not only on the impact of happiness
in productivity but also the triggers for emotions during software
development and their impact on the developers’ well-being [27].
To the best of our knowledge, there are no studies focused on the
implications of the use of Al-enabled tools for software developers
regarding human and social aspects. So far, research has focused
on technical challenges, e.g., [16] and [20].

3 A SOCIAL SCIENCE FICTION EXERCISE

As a first step to tackle this research problem, we performed a social
science fiction exercise. This method is a thought experiment in the

Exploring potential implications of intelligent tools for human aspects of software engineering

form of fictional stories that explore how technological advance-
ments might impact social life and social order [10]. It is associated
with the idea that the future is not a natural fact but a design de-
cision, i.e., it is built. As Montfort [26] writes: “The future is not
something to be predicted, but to be made”.

Although we have not found previous uses of the method in
SE research, there are examples in related fields. For technology-
enhanced learning, Selwyn et al. [35] performed a social science
exercise to speculate how using digital tools to support education
will affect schools in the next decade. Based on five vignettes about
characters from an Australian high school, including students, their
parents, and teachers, they identified three potential consequences
of this phenomenon: a reconfiguration of time and space of school,
i.e., students will have to engage with the school on a continuous
space regardless of time and space; the increasingly intertwinement
between school space with code, changing how social process occur
including power relations, the increasing “platformization of the
school,” and the increased dependency of the school to data digitally
generated.

3.1 Procedure

To increase the study’s reliability, we followed a defined process to
create the stories. Another objective was to avoid creating fantas-
tic, unfeasible narratives. It is essential to stress the social science
aspect and to remind that we are not doing science fiction literature.
First, we reviewed recent studies on Al for SE published in top
venues and tools available for practitioners, specifically automatic
code generation and bug prediction. Besides GitHub Copilot, re-
garding automatic code generation, we can mention IntelliCode
Compose [39], a tool “capable of predicting sequences of code to-
kens of arbitrary types, generating up to entire lines of syntactically
correct code.” For bug prediction, the results obtained by Di Nucci et
al. [7] caught our attention: their model using developers’ structural
scattering, a metric to show how scattered the code modifications
introduced by a single developer, was superior to other bug pre-
diction models. The authors stress that developer-related factors
could still be further explored for bug prediction.

Inspired by these models and tools, we extrapolated the poten-
tialities of these tools and drafted two stories. Then, we presented
the two drafts in a writers’ workshop, where a group of software en-
gineering and information systems researchers discussed ideas and
initial versions of research papers. Our goal was to obtain feedback
about the stories and verify if they represented reasonable scenarios
for the future. The group consisted of six researchers, including one
of the authors, mainly at the initial stages of their research career,
including PhD students, postdocs, and an assistant professor. The
feedback was good, and the participants only suggested small story
changes.

3.2 Stories

As a background for the stories, we will use a fictional company
called Awesome. It offers Software-as-a-Service (SaaS) productivity
tools to creative graphical workers, such as designers. An internal
development team is responsible for implementing the software. It
consists of software programmers but also of user interface design-
ers, user experience experts, quality assurance specialists, testers,

CHASE °24, April 14-15, 2024, Lisbon, Portugal

and managers. Besides this engineering team, the company has
other teams, such as marketing, sales, operations, and administra-
tive staff.

With Awesome, we aim to represent a typical software-intensive
company in which a number of teams develop software for external
users. We expect that, in the near future, most of these compa-
nies will employ Al-enabled tools to support software development
to improve productivity and improve code quality. To represent
these tools, we propose imaginary but feasible near-future solu-
tions available to developers and managers of Awesome. The first is
Navigator, a commercial IDE implementing cutting-edge machine-
learning algorithms to enable coding assistance, such as advanced
autocompletion and bug prediction. The second is the Quality Man-
agement System (QMS), an automatic tool to assess the quality
of the code produced continuously. Below, we describe fictional
situations of how these tools could affect the lives of collaborators
of the company.

3.2.1 Dol really know how to code? Miriam was really happy. Even
after a year working at Awesome, she was still jubilant. It was the
job she dreamed of during her Software Engineering bachelor stud-
ies. Of course, the job is much easier than she thought. She often
writes a method name and the Navigator tool creates a draft on
which she needs to do some small tweaks. Once, Miriam explained
her job to her grandfather. He replied that it had reminded him
of when the new robots arrived in the car factory where he used
to work until retiring. Since this fact, Miriam started wondering
if, in the future, she would be substituted by a robot like many
of her grandfather’s colleagues were in the factory. But she was
not thinking about her future that day; she was enjoying being a
software engineer at Awesome. When she wrote the first method
signature, no suggestions appeared. ‘What happened?’, she thought.
She looked around and saw several interrogation faces among her
colleagues. In a matter of minutes, the situation was clear: Naviga-
tor was offline. The provider of the autocompletion tool had been
hacked, and it would not work for the remainder of the day. The
situation represented a problem for Miriam who was handling a
critical bug preventing a fraction of users from accessing a tool pro-
vided by Awesome. At first, Miriam thought it would be fine: before
joining Awesome, she had never used Navigator and managed to
code several projects during her bachelor studies. ‘Tt is going to be
fun,” Miriam thought. But her mind changed quite soon as she had
to code relying only on her mind and simple autocompletion tools
that did not rely on Navigator. “How do I do this structure in this
language? And what is this call to develop this task using this API?”
At the end of the day, Miriam had managed to finish the task, but
she was not sure if she had done the best job. Without Navigator,
it was not possible to assess it. On her way home, several doubts
came to her mind: “Am I really a software developer? What am I?
Just a tool operator?”

3.2.2 The algorithm is firing you. That day seemed an ordinary
one for Kyle. He was going to the same address he had gone to
for five years since he joined the startup as the second developer
in the Awesome team. The address is the same but not the place.
When he started, the team comprised eight people working in a
50-square-meter office. Now, the company has 150 collaborators
distributed in three floors. He was the first hired developer in the

CHASE 24, April 14-15, 2024, Lisbon, Portugal

company. Before him, there was only Martin, one of the founders
with a technical background, who used the title of CTO.

When Kyle enters the engineering team’s open space, he passes
by Martin’s glass office. The CTO calls him for a talk. The de-
veloper thought it would be another conversation about the new
architecture they are building to support the company’s expan-
sion. However, this idea changes when Kyle enters the room and
sees Martin’s face. He had seen a similar face once when he was
dismissed from his first job. He imagines that the subject of the
conversation would be similar.

The fear of being removed from that place, the company he
witnessed to grow and conquer the dreams they had in that small
room, had installed in his mind. The feeling increases as Martin
describes Kyle’s importance in the company’s building. ‘Martin,
are you firing me?’ T'm sorry, Kyle. I don’t have a choice. QMS says
that the code you make has a probability, on average, of 30% of being
buggy. You can see that on your personal dashboard, no?” One of
QMS’ features is to predict, based on an Al-enabled algorithm, the
probability that a piece of code is buggy or not. You know, since the
IPO, QMS reports are sent to the shareholders. If we keep you, there
will be a flag on the report... saying that we decided to keep a developer
with a tendency to create buggy code. And, you know... it is really
hard to talk to these people... I'm really sorry..” Kyle tries to argue
‘But I know every detail of this system. I worked in architecture from
the beginning... Because of that, I often handle more tricky problems...
You know... this could explain why...’ But the decision has been taken
and today is the last day of Kyle at Awesome.

3.3 Potential issues

The stories presented above portray potential issues for developers
of Al-enabled tools.

First, developers will probably experience a disruption in their
importance to the software development process. Rather than being
those responsible for generating code, they might only supervise
automatic code creation. This development is similar to what hap-
pened in manufacturing where machines replaced manual work-
ers. Work has been extensively studied as a significant element of
self-existence. From psychological and sociological aspects, philoso-
phers and researchers, such as Marx, Durkheim, and Weber [3],
described how society is based on the productive activities of hu-
man beings. As we have seen in both stories, developers might face
existential questions when they perceive being replaced by intel-
ligent tools. The implications of this substitution for knowledge
workers, of which software engineers are considered the cutting
edge [17], is yet to be seen. Based on this discussion, we can reach
the following propositions:

Proposition 1: Developers might feel replaced by Al-based
tools.

Proposition 2: Al-based tools might influence the self-
perception of developers.

Then, as presented in Kyle’s story, decision-making will be in-
creasingly delegated to programmatic solutions to avoid biases and
errors from human managers. However, automatic solutions might

Melegati et al.

not consider non-tangible, qualitative aspects such as tacit knowl-
edge and teamwork. Tacit knowledge is a key aspect in software
development, associated with more effective teams [33]. This issue
is related to the ever-increasing surveillance in the societies of the
future [30]. We posit this issue as the following proposition:

Proposition 3: The delegation of decision-making to Al-based
tools might depersonalize decisions.

Finally, a challenge that the emergence of Al-enabled tools poses
to technology educators is how to prepare students to handle the
impending changes they will face during their work. A current
student will probably work for more than 30 years in the field. The
first story shows the story of Miriam who had just completed her
training and is already lost on how her professional life will be. The
following proposition represents this issue:

Proposition 4: Education and training of software developers
need to be adapted to the use of Al-based tools for SE.

4 A QUALITATIVE EXPERIMENT

By performing the social science fiction exercise, we reached several
potential individual and social issues regarding Al-based tools. In
the next step, we aim to collect empirical data to support or refute
these propositions. Unfortunately, performing studies to evaluate all
the propositions identified is not feasible in a single study, not even
a single paper. Given that Al-based tools are still being adopted in
software development teams and companies, evaluating the impli-
cations at the team level would not be currently feasible. Therefore,
in this next step, we will focus on the first two propositions raised
in the social science fiction exercise, namely a potential feeling
of replacement felt by developers towards Al-based tools and the
influence of these towards developers’ self-perception. Through
this study, we also aim to demonstrate the value of this method for
the research on human aspects of SE.

Therefore, we decided to explore the feelings felt by developers
towards Al-based tools, through a qualitative experiment, an inte-
grated approach consisting of investigating the process of meaning
construction in an experimental setup [32]. Qualitative experiments
employ qualitative strategies, such as focus groups and interviews,
on subjects exposed to a randomized stimulus, as in a typical quanti-
tative strategy [32]. By performing this experiment, we aim to verify
the existence of evidence supporting or not the two propositions.

A qualitative experiment is composed of four phases [32]. In the
first phase, the pre-test, participants answer a questionnaire to be
profiled. In the second phase, participants are exposed to a stimulus,
and their reactions are collected in the third. Finally, in an optional
fourth phase, the participants’ reactions to the whole process are
collected. Below, we describe the qualitative experiment we con-
ducted including the participants and the context in which they are
inserted. A summary of the experiment execution is presented in
Figure 1.

Exploring potential implications of intelligent tools for human aspects of software engineering

Pre-experiment setup

“_}m GZ_)@

E Participants G3 || G4

Gathering Pre-Test
Group ID
attribution

Group-specific initial
restriction explanation

Begin problem solving

(15 minutes)

§ {3

Participants
Gathering

CHASE °24, April 14-15, 2024, Lisbon, Portugal

Experiment setup

G1 G2

- :

G3 G4

Problem ,
Presentation Group Division by ID

Group-specific final
restriction explanation

Continue problem
solving (15 minutes)

Post -Test

Figure 1: Experiment execution steps.

4.1 Participants

The experiment was conducted in an R&D environment in a Brazil-
ian university that teaches Apple mobile application development.
In the environment, students are introduced to the development
ecosystem of Apple platforms and obtain experience by working
together in agile teams. Students can focus on software develop-
ment or interface design during the program but are exposed to
both areas during their training. These students are supported by
tech, design, and business mentors who have solid experience in the
software industry. We will refer to these mentors as the leadership
team in this paper. The teams work on developing apps that support
users to overcome real-world problems. The environment encour-
ages team members to cooperate in all software development stages
from requirements elicitation to deployment and maintenance steps.
All teams use Scrum [34] to manage their work.

4.2 Pre-test

In the pre-test phase, we aimed to collect the participants’ percep-
tions regarding the role of a software developer and Al-based tools
for SE. To achieve this, we developed a questionnaire consisting of
open-ended questions which is available in Appendix A.

4.3 Stimulus

We designed the experiment with 4 different experimental condi-
tions (G1, G2, G3, and G4), depending on how participants should
use Al-based tools to solve a non-trivial programming problem.
Participants in G1 would never be allowed to use Al tools (control
group). Participants in G2 would begin the problem by not using
any tools but would start using generative Al-based tools in the
second half of the experiment. Participants in G3 would be the

opposite: in the first half, they could use any tool, and then, in the
second half of the experiment, they would be instructed to stop
using any tools. Finally, participants in G4 would always have to
use generative Al-based tools.

The programming problem of the experiment had to be non-
trivial to make it difficult for the generative Al-based tools to pro-
vide the answer on the first attempt. Participants would have to
provide many prompts to eventually get the final answer from the
tool. In this sense, our strategy entailed selecting a well-known
math problem “masked” as a set of statements the participants
should follow. The chosen problem was the power method. The
power method is a numerical algorithm used primarily to estimate
the largest eigenvalue of a matrix and its corresponding eigenvector.
It is particularly useful when dealing with large matrices where
other methods might be computationally impractical. The algo-
rithm is iterative, starting with an initial guess for the eigenvector
and repeatedly multiplying it by the matrix until convergence.

This problem was presented to the participants as follows:

« %

e Vector of “n” positions that multiplies a square matrix (n x
n);

o Initial vector with its first position equal to 1.0, i.e., v[0] =
1.0. The remaining positions are equal to 0.0;

e Values in the positions of the matrix should be between 0.0
and 1.0 (not inclusive);

e The sum of each row of the matrix must be equal to 1.0;

e Iterative process, with stopping condition: values in all vector
positions must respect a tolerance of 6 decimal places.

As an example, we presented the vector [1.0 0.0 0.0 0.0]
and the following matrix:

CHASE 24, April 14-15, 2024, Lisbon, Portugal

0.25 0.20 0.10 0.45
0.10 045 035 0.10
0.07 0.90 0.02 0.01
0.80 0.05 0.08 0.07

Then, we went step-by-step explaining the expected outcome
until we got to the final result (the expected vector respecting the
given condition). Participants were allowed to use the same vector
and matrix to check whether they were going correctly.

4.4 Post-test

In this step, in which we combined the third and fourth phases,
participants answered another questionnaire with open-ended ques-
tions that were different depending whether they had used an AI-
based tool or not. Participants in the control group (G1) assessed
the task’s difficulty and if it had changed their perception of the
role of a software developer. The other participants had to answer
questions regarding their impressions and opinions of Al-based
tools if they depended on the tools, and if the experiment changed
their perception of the software developer role. These instruments
were also validated in the pilot and are available in Appendix A.

4.5 Pilot

In order to test our experiment, we ran a pilot with four members of
the leadership team who were not involved in the research. Hence,
they did not have any information about this process. Each member
represented one of the groups (G1, G2, G3 and G4).

We began the pilot by assigning each one an ID (from 1 to 4),
and then we ran the pre-test. We found out that on questions 4
and 5 (see Appendix A), it was important to add clear examples of
what we were talking about. Therefore, we clarified the questions
by adding the GitHub Copilot example.

After that, we gave each one a piece of paper on which they could
read the instructions about the experiment (in this case, whether or
not they could use Al-based tools). No questions were asked about
these instructions. Hence, we moved to the next step which was
the explanation of the problem (as explained in Section 4.3). The
participants understood the problem well.

It is important to note that we estimated, based on our own expe-
rience, that the problem could be solved in 20 minutes. Therefore,
we planned to run the experiment for 10 minutes and then give
participants the new instructions for the remaining 10 minutes.

At this moment, we told participants they would have 20 minutes
to solve the problem, and we started the clock. When we reached 10
minutes, we gave them their new instruction and let them work for
the remaining 10 minutes. None of the participants have finished
on time, but they were pretty close.

To finish the pilot, we asked them to respond to the post-test
questionnaire. We thanked the participants who participated in the
activity and ended the process. Now, we were ready to improve our
experiment.

Our first modification from the pilot was the simplification of
some questions, as the pilot participants reported that the questions
were not clear and there were typos in the questions. The second
and final modification was regarding the time. Given that pilot par-
ticipants reported that they could not finish on time (and knowing
they had more experience than the actual study participants), we

Melegati et al.

decided to increase the time of the experiment to 30 minutes. With
this modification, we proceed to execute the experiment.

4.6 Execution details

For our study, we invited 38 participants who were part of this
R&D environment and were focusing on software development.
The participation was voluntary and participants could leave the
experiment at any moment. For the experiment, we followed the
steps below:

(1) The researchers gathered the participants in an auditorium;

(2) The researchers attributed a random identifier (G1, G2, G3
or G4) at random to each participant;

(3) Participants fulfilled the pre-test questionnaire;

(4) The researchers presented the programming problem that
they should solve. During this step, participants had the
chance to ask any questions related to the programming
problem;

(5) Participants were separated into four groups based on their
identifier;

(6) Participants of each group were then oriented on the spe-
cific restrictions of their groups. G1 and G2 were initially
oriented not to use any generative Al solution to solve the
programming problem and G3 and G4 were initially oriented
to use any generative Al solution to achieve this. This step
lasted 15 minutes.

(7) The experiment was paused and new instructions were given
to the participants. G1 and G4 were not given any new in-
structions (in other words, they were told that the original
instructions remained valid). G2 was given a new instruc-
tion that from that moment forward, they were oriented to
use any generative Al solution to solve the programming
problem and G3 was given a new instruction that from that
moment forward, they were oriented not to use any gener-
ative Al solution to solve the programming problem. This
step lasted 15 minutes.

(8) The researchers gathered the participants in the auditorium
again;

(9) Participants filled out the post-test questionnaire.

4.7 Data analysis

The participants answered the questionnaires on an online platform.
The answers were collected and saved in a spreadsheet. The first
step of the qualitative analysis consisted of open coding. Since
we focused on openly identifying themes rather than labeling the
data using predefined codes, we did not calculate the Inter-Rater
Reliability (IRR) agreement. According to McDonald et al. [21], this
open coding approach does not need the calculation of IRR.
Initially, one of the authors conducted this process alone, and
afterward, a second author reviewed the codes. Finally, all the
authors discussed potential issues and fixed the codes accordingly.
In this process, answers not related to the goal of the experiment
were discarded. The final codes were then classified as being positive
towards the tools, negative, or indifferent. Finally, we analyzed
how the answers were classified depending on the stimulus the
participants received. The following section presents our results.

Exploring potential implications of intelligent tools for human aspects of software engineering

4.8 Replication package

To allow the replication of our study, we provide a replication
package® consisting of all the answers freely translated to English*,
redacting sensitive information. We also present how we coded
each answer.

5 RESULTS

In this section, we present the results of our analysis. First, we
present the codes we identified related to developers’ perceptions
of the tool, and then, we compare the answers of the different
groups.

5.1 Developers’ perceptions about the tool

To allow the comparison of the different groups of participants, we
divided the developers’ perception into two high-levels categories:
negative and positive perceptions. Below, we describe the categories
present in each one of these high-level categories.

5.1.1 Negative perceptions.

Negative feelings. This category groups codes related to nega-
tive feelings expressed by the participants related to the use of
the tool. First of all, some participants mentioned aspects regard-
ing a possible dependence of the tool to perform their activities.
Still in the pre-test questionnaire, a participant already described
what could be a risk of getting dependent: T see several peer
students using these tools daily for everything, I perceive this creating
a certain dependency on these technologies and reducing the capacity
of developing software by their own.” When asked about the issue,
many participants described dependence of the tool: ‘T believe
I'realized how much I was dependent [when trying] to debug some-
thing.” Besides concerns related to a possible dependency to the
tool, participants expressed other negative feelings towards the
tool. First, a participant mentioned the lack of control: “[Once
we were allowed to use the tool,] I tried to see if it could answer the
question of the challenge using my code as a basis. [...] it delivered
to me another implementation code [of which] I lost control, I did
not understand what many things were doing and, consequently, [the
solution] was not working.” Another common feeling expressed by
the participants was the lack of trust on the tool. In this regard,
they have mentioned several times that they struggle to rely on
the solutions given by the tool since they know that the tool might
make mistakes. A participant wrote: ‘T feel that it is hard to know
[until when] one can trust [ChatGPT]”. Finally, a participant was
scared by the tool capacity. When answering the question about
the feelings after starting using the tool, a respondent answered:
“Stunned, because I had already tried for several minutes to under-
stand the problem, but when I gave the same instructions to the tool, it
gave me the solution and the detailed explanation in seconds.” Other
participants expressed negative feelings towards their own selves
motivated by the use of the tool. A participant expressed guilty
about not doing the task: ‘I felt a bit guilty for not writing the code
and thinking of the logic, but [the tool] made the things much more

Shttps://zenodo.org/doi/10.5281/zenodo.10108270

4To avoid hurting the blind-review, we do not provide the original answers. If the
paper gets accepted, we will update the replication package to contain also the original
answers

CHASE °24, April 14-15, 2024, Lisbon, Portugal

clear” Another participant felt that the experiment made him/her
aware of a his/her lack of basic knowledge. ‘I realized that I have
to practice more common logic problems and [understand them well]
to not depend too much on Al-based tools.”

Acceptance issues. Besides negative feelings when using the tool,
we observed some issues even when not using them. These feelings
might be issues with the acceptance of Al-based tools. A participant
preferred to work without help: “In the end, I did not use it because
I preferred to do it by myself, without help.” Another participant
admitted not liking the tool.

Issues of the tool. Participants also reported some issues of the
tool. One participant reported not reliable proposals. “[The tool]
gave me a complete function that did the multiplication. It took only
a few seconds. However, the results returned by this function made the
vector values converge to around 0.241.” Other participants reported
that the tool was proposing more complex solutions than those
that they would themselves develop. “In certain moments, it pro-
vided good and succinct answers, but, in others, it ‘complicated’ the
problem’s solution, using more complicated and unnecessary paths.”
Similarly, a participant who had to stop using ChatGPT complained
regarding the difficulty to understand the code generated by the
tool. “When I stopped using [the tool], I felt a bit lost when the code
generated by ChatGPT showed an error, leading me to take more time
to understand the code and adjust it.” Another participant who had
to start using the tool complained about changing the train of
thought. “[The result of the tool] biased my thinking and confused
me in the process.”

Limitations of the tool. Some participants also reported some
limitations of the tool. For two of them, the tools are not a substi-
tute for knowledge. “A developer is complete on his/her own, with
his/her theoretical background (documentation and books), [in con-
trast] an Al trained with practically random models will never have
the same quality of documentation/books/articles and open source
codes curated by other developers.” Another issue regards the need
for specific training. ‘T think they help a lot, but one has to know
how to use the tool both regarding the input and knowing up to what
point it should be used.”. Finally, some participants reported that the
tool was not helpful for the exercise.

Positive feelings when not using the tool. Some participants ex-
pressed positive feelings when not using the tool. A participant
mentioned feeling good by not depending on AL T felt good by
doing [the task] without the help of Al tools.”

Another participant, who was part of G2, took the task as chal-
lenging not to use: “[In the beginning, I was] not very hopeful
[about not being able to use Al based tools]. [In the end, I thought:]
OK, it will be nice to rely on them.”

5.1.2 Indifference. Some participants expressed indifference of
using or not the tool since they would have “done the same manu-
ally”. When asked if they felt dependent on the tool, many partici-
pants declared not feeling dependent of the tool. As one of them
stated: “the tool generated the solutions I would have done without it,
but with the benefit of [a shorter] time.”

5.1.3 Positive perceptions.

CHASE 24, April 14-15, 2024, Lisbon, Portugal

Value of the tool. In many answers, the participants acknowledge
the positive aspects of the tool. For many of them, it was considered
useful. “I’'m not used to using AL but there was no problem. I just
asked functions to speed up the process, and the answer was always
precise.” Some participants were more specific in their answers,
explaining how the tool was useful. Two respondents mentioned
that the tool gave them a starting point for them to perform
the task. “They help a lot and are a good initial step, to help you
to have a basis to evolve [the solution].” Others feel that the tool
is good for repetitive/simple tasks. ‘T think they are good to
make simple stuff, but, for more complex things, they get lost a bit
while doing the work and we have to fix some stuff. But it saves an
initial [repetitive] work, for example, initializing variables.” Another
participant mentioned speeding up the process. “[The tools] help
a lot in speeding up the process and giving simple solutions to the
problems.” Other participants reported that the tool was useful by
augmenting the memory. ‘It helped me understand and remember
some concepts and build the code.”

Positive feelings. Several participants expressed positive feelings
provoked by the use of the tool. For a participant, the tool increased
the feeling of safety when facing the problem. T felt safe. It opti-
mized my thought process.” Related to that aspect, many respondents
mentioned an increasing feeling of confidence. ‘T felt more con-
fident because, with some right inputs, I can get to the right answer
without a huge effort, different from the traditional Google search.”
Still, a participant expressed to be feeling more comfortable
when using the tool: “When I started using the tool I felt more com-
fortable, [because I had] the possibility of better expressing what I
needed and being able to follow a train of thought based on the answers
[the tool] delivers.” A participant mentioned that the experiment
made him feeling not replaceable. ‘Tt just confirmed that Al tools
represent ways to improve developers’ productivity but they are not
capable of replacing them.” Finally, a participant, still in the pre-test
questionnaire, expressed excitement about the tools’ potential:
‘T think technologies like these very interesting, to think about how
they work and how they are implemented, their complexity leaves me
excited on imagining how I would do something like this.”

5.1.4 Perception of the developer role. Finally, it is interesting to
report how the participants perceive the role of a developer. When
asked about the perception of what it means to be a developer, four
participants stressed the idea of the developer as a user of tools.
“A developer has to know how to use the available tools but understand
the why and how to use them in the right way.” Another participant
stressed the idea of developers as builders: T still believe that [de-
velopers] are builders, from the bureaucratic part until the operational
part of the system.” Another one focused on the idea of developers
as information seekers. “[The experiment] highlighted something
that I implicitly assumed that one of the essential abilities of a de-
veloper is to know how to research and collect information.” Finally,
a participant focused on developers as team players. [To be a
developer] means to know how to work in a team [to fulfill] a great
computing project.”

Melegati et al.

Table 1: Perception of own sKkills by group

Perception of own skills
Low Medium Good

Group Number of answers

1 10 2 5 3
2 10 1 7 2
3 9 0 6 3
4 8 1 4 3

Table 2: Perception of own experience with Al-based tools
by group

Perception of experience

f
Group Number of answers No Low Good

1 10 2 5 3
2 10 1 8 1
3 9 2 5 2
4 8 2 3 3

Table 3: Answer to the task difficulty by group

Difficulty of the task
Group Number of answers Fasy Medium Hard
1 10 1 5 4
2 10 0 9 1
3 9 4 2 3
4 8 1 4 3

5.2 Comparison by groups

To compare the groups, first, we had to compare if their participants
were similar regarding skills and experience with Al To this aim,
we compared the answers to the pre-test questionnaire regarding
the perceptions of their own skills and experience of Al-based tools
by group. This analysis is presented in Tables 1 and 2.

Based on this analysis, we could observe that the groups have
similar configurations regarding the perception of their own skills
and experience with Al-based tools and the most common is to
have a medium perception of the skills and a low experience with
Al-based tools.

Then, we analyzed the different groups regarding their reactions
to the task. This analysis was based on the answers to the post-
questionnaire. One participant from Group 4 did not submit an
answer to the post-questionnaire so this analysis was performed
based on 37 interviews. First, Table 3 describes how different groups
perceived the difficulty of the task.

Table 4 presents the distribution of the answers of the partici-
pants who had contact with the tools regarding their perception of
Al-based tools.

In these results, we could observe that:

o regarding the impression of Al tools, the comments were
balanced on the groups that used Al-based tools in part of
the time, but for those who only used the tools, the negative
ones were more prevalent;

Exploring potential implications of intelligent tools for human aspects of software engineering

CHASE °24, April 14-15, 2024, Lisbon, Portugal

Table 4: Answers distributions by group and some questions (only groups 2, 3, and 4)

Group Number Impression of Al tools

Feeling when starting

or stopping the use Dependence feeling

Pos. Neg. Not related Neg. Indiff. Not related Pos. Neg. Indiff.
2 10 4 5 1 4 1 2 0 2 8
3 9 4 5 0 3 1 2 0 4 5
4 8 2 6 0 3 0 0 0 7 1

o regarding starting or stopping the use, the comments were
balanced;

e finally, regarding the feeling of dependence, the negative
comments were more prevalent among the participants who
used Al the whole time and then among those who had to
stop using the tool.

6 DISCUSSION

The qualitative experiment we conducted brought some pieces of
evidence that could be related to the first two propositions raised in
the social science fiction exercise. First, negative comments related
to the feeling of dependence were more common in the groups that
worked more with the tools or had to stop using the tool (a similar
scenario to that envisioned in the first story), providing evidence
related to Proposition 1: “Developers might feel replaced by AI-
based tools”. Second, negative aspects were more present in the
answers from the group that worked the whole time with the tool.
This result suggests that Proposition 2: “Al-based tools might
influence the self- perception of developers” should be further
investigated.

In this regard, the codes obtained in the analysis gave interesting
insights regarding the reasons for these results. First, developers
had the feeling of losing control of the final product, delegating it
to the tool. Research has shown that control is an important aspect
for developers. The lack of it has been mentioned as a reason for a
bad day for a developer [25], and it also influences the adoption of
techniques by developers [12, 13].

In this regard, many of the aspects identified in our study indicate
potential issues for adopting Al-based tools. Technology acceptance
is a topic that has been largely studied [5, 42, 43]. A successful
model for this concern has been the Technology Acceptance Model
(TAM) [5] and its extension TAM2 [43]. According to the models, the
usage of a technology is determined by an intention to use that, in
turn, is influenced by the perceived usefulness and perceived ease of
use. The perceived usefulness is then influenced by subjective norm,
image, job relevance, output quality, and result demonstrability.
Many of the codes grouped in the negative aspects, such as not
reliable proposals, proposing more complex solutions, and lack of
control and trust could be linked to the output quality perceived by
developers. TAM and other adoption models have been evaluated to
explain the adoption of software methodologies by developers [14,
31]. The results partially supported the theories, describing that the
adoption of software methodologies is driven by an organizational
mandate to use it, the compatibility of the methodology with the
way developers work, and the opinions of developers’ coworkers
and managers on the technology [31]. However, regarding the

acceptance of Al, it has been found that individuals are “mostly
driven by subjective norms and emotions” [6].

Although less prevalent, we could also observe, as the participant
who felt scared by the tool capacity shows, a certain level of concern
about the capabilities of Al to support SE. This aspect is related
to what has been called Al anxiety [19], i.e., the anxiety expressed
by individuals concerning Al Li et al. [19] investigated Al anxiety
through the lenses of the integrated fear acquisition theory. They
identified the following sources of anxiety: privacy violation, biased
behavior, job replacement, learning, existential risk, ethics, artificial
consciousness, and lack of transparency. This fear humans have
towards technology is so present that it is projected in the popular
media by depicting robots as monstrous [40].

Finally, the research on Al ethics have focused on the relation-
ship of the software products towards the users [18], and software
developers are the users of Al-based tools for SE. Vakkuri et al. [41]
proposed a model of the relationship among the key principles
in AT ethics. According to the authors, transparency supports the
predictability, and both together with fairness generates the trust-
worthiness on Al Our results are in line with the model since the
many of the negative perceptions we identified, such as lack of
trust and lack of control are related to the idea transparency and
predictability of the tool.

6.1 Implications for research and practice

Our results represent some implications to research and practice.
First, in the development of Al-based tools, that is becoming in-
creasingly relevant both in theory and practice, it is essential to
consider the human aspects of the developers, otherwise risking
creating distress and hurting the adoption of these tools. These
human aspects should be used as input for software companies
developing Al based tools which aim to be used by developers.

Second, developers and the companies in which they work should
consider potential psychological issues when implementing tools
disrupting the way developers work. Our experiment provided in-
dicatives that these psychological issues can vary dramatically from
a developer to another.

Finally, SE educators and trainers should work on how to pre-
pare future and current developers to handle new generation of
tools. Furthermore, as indicatives in our experimental study have
presented, it is important that SE educators assess ways in which
to teach new software engineers how to adopt or get used to these
tools but are also aware of their limitations.

CHASE 24, April 14-15, 2024, Lisbon, Portugal

6.2 Threats to validity

To discuss the potential threats to the validity of our study, we
followed the guidelines suggested by Wohlin et al. [45]. The authors
present four steps to the validity of experimental results: construct
validity, internal validity, external validity, and conclusion validity.
They also mention that the counterpart of conclusion validity is
reliability for qualitative studies. Since we performed a qualitative
experiment, we deemed it necessary to discuss this point as well.

Construct validity. Constructs are concepts that are, in prin-
ciple, quantifiable but not directly measurable. Construct validity
regards whether the constructs in the study are real and if the in-
dicators to infer them really reflect the constructs [29]. Based on
the pre-test phase of our study, we analyzed the perceptions of
the participants regarding their skills and their experience with
the tools. To do so, we relied on their own assessment based on
the researchers’ analysis. Although this procedure might represent
a threat, the potential impact of this issue is limited given that
this indicator was just used to compare the groups and not to pro-
pose causal effects. It is worth mentioning that during the pilot
study, participants were invited to provide feedback regarding any
concerns about the pre-and post questionnaire questions.

Internal Validity. We manually analyzed the data to extract the
codes used to identify the negative and positive aspects regarding
the student’s perceptions of the Al-based tools used in our study,
which might introduce researcher bias to our results. To mitigate
this internal threat in our study, we followed a well-defined analysis
procedure in an iterative process with periodic group meetings. The
definitions were discussed and refined by the authors. Also, after
the iterative coding process, the resulting codes and analysis were
discussed among the authors.

External validity. This aspect concerns to what extent our
results are generalizable. The generalization of our results may be
limited once our population is limited to students and all of them
are part of the same R&D environment. Another potential issue may
be the proposed treatment that could not represent real situations.
To mitigate this threat, we provided supplemental material and
encouraged researchers to replicate our study and compare their
findings with ours.

Conclusion validity. This aspect regards the relationship be-
tween treatment and outcome, i.e., if the observed behavior in the
outcome was determined by the treatment and not by other factors
not considered. To reduce potential threats in this regard, we com-
pared participants regarding their perceptions of their own skills
and experience with Al-based tools. We also compared the results
with a control group.

Reliability. This aspect concerns to what extent the results are
dependent on the researchers involved in the study. Thus, Mer-
riam [24] suggests checking the consistency of the results and
inferences. According to Merriam [24], consistency refers to en-
suring that the results consistently follow from the data and no
inference cannot be supported after the data analysis. To increase
consistency, we performed data analysis when, initially, the first
author conducted the coding process alone, and afterward, a second
author reviewed the codes alone as well. Finally, all the authors
discussed potential issues and fixed the codes accordingly. During

Melegati et al.

this process, we had weekly meetings to discuss and adjust codes
and categories until we reached an agreement.

7 CONCLUSIONS

The emergence of Al-based tools will disrupt several aspects of our
lives. Knowledge-workers, including software developers, will prob-
ably have their jobs profoundly affected by these tools. To explore
potential issues in this regard, we performed a social science fiction,
creating two futuristic stories involving software engineers. Based
on them, we described four propositions regarding possible impacts
to human or social aspects of SE. To evaluate two propositions, we
conducted a qualitative experiment with students in which they
had to solve a programming problem, using or not an Al-based tool.
Analyzing the answers of the participants to questionnaires applied
before and after the experiment, we collected several perceptions,
both positive and negative, of the participants towards the tool.

Our study is just an initial exploration of a potentially huge
challenge for SE practice in the next years. It has provided some
pieces of evidence that support the idea that the perception of
developers of themselves might be impacted and they might fear
to be replaced. There are several possibilities to continue explore
this research problem. Future work could focus on the evaluation
of the presented propositions. For example, once these tools are
more widely adopted, controlled experiments could be performed
to quantitatively assess the propositions and it would be also possi-
ble to better study more social implications, which are harder to
emulate in a controlled environment. Our study also demonstrated
a possible use for the social science fiction in SE research that has
increasingly relied on methods from social sciences.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenacéo de Aperfeicoa-
mento de Pessoal de Nivel Superior - Brasil (CAPES). Igor Wiese
thanks CNPq #408812/2021-4, MCTIC/CGI/FAPESP #2021/06662-
1, Fundacdo Araucaria and UTFPR. This study was also partially
supported by the Ministry of Science, Technology, and Innovations
from Brazil, with resources from Law No. 8.248, dated October 23,
1991, within the scope of PPI-SOFTEX, coordinated by Softex.

REFERENCES

[1] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. 2017. Agile
Software Development Methods: Review and Analysis. arXiv:1709.08439 [cs.SE]

[2] Joanna Bryson and Alan Winfield. 2017. Standardizing Ethical Design for Artifi-
cial Intelligence and Autonomous Systems. Computer 50, 5 (may 2017), 116-119.
https://doi.org/10.1109/MC.2017.154

[3] C. Casey. 1995. Work, Self, and Society: After Industrialism. Routledge.

[4] Randy Connolly. 2020. Why computing belongs within the social sciences.
Commun. ACM 63, 8 (jul 2020), 54-59. https://doi.org/10.1145/3383444

[5] Fred D Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly 13, 3 (sep 1989), 319.
https://doi.org/10.2307/249008

[6] Manlio Del Giudice, Veronica Scuotto, Beatrice Orlando, and Mario Mustilli.
2023. Toward the human - Centered approach. A revised model of individual
acceptance of AI. Human Resource Management Review 33, 1 (2023), 100856.
https://doi.org/10.1016/j.hrmr.2021.100856

[7] Dario DiNucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,

and Andrea De Lucia. 2018. A Developer Centered Bug Prediction Model. IEEE

Transactions on Software Engineering 44, 1 (jan 2018), 5-24. https://doi.org/10.

1109/TSE.2017.2659747

Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. Borges, Andre T. Endo,

Marcelo M. Eler, Diego R. C. Dias, and Marcelo P. Guimaraes. 2019. Machine Learn-

ing Applied to Software Testing: A Systematic Mapping Study. IEEE Transactions

=

https://arxiv.org/abs/1709.08439
https://doi.org/10.1109/MC.2017.154
https://doi.org/10.1145/3383444
https://doi.org/10.2307/249008
https://doi.org/10.1016/j.hrmr.2021.100856
https://doi.org/10.1109/TSE.2017.2659747
https://doi.org/10.1109/TSE.2017.2659747

Exploring potential implications of intelligent tools for human aspects of software engineering

on Reliability 68, 3 (2019), 1189-1212. https://doi.org/10.1109/TR.2019.2892517

Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2021. Software [31
engineering meets deep learning: a mapping study. In Proceedings of the 36th

Annual ACM Symposium on Applied Computing. Association for Computing
Machinery, New York, NY, USA, 1542-1549. https://doi.org/10.1145/3412841.

3442029 (32]
[10] Neil Gerlach and Sheryl N. Hamilton. 2003. Introduction: A History of Social

Science Fiction. Science Fiction Studies 30, 2 (2003), 161-173. http://www.jstor.
org/stable/4241163

Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson. [33
2018. What happens when software developers are (un)happy. Journal of Systems

and Software 140 (jun 2018), 32-47. https://doi.org/10.1016/j.jss.2018.02.041

[12] Gina Green and Alan R. Hevner. 1999. Perceived Control of Software Developers

[9

=

[11

and Its Impact on the Successful Diffusion of Information Technology. Technical [34]
Report April. Carnegie Mellon University.
[13] Gina C. Green and Alan R. Hevner. 2000. Successful diffusion of innovations: [35]

guidance for software development organizations. IEEE Software 17, 6 (2000),
96-103. https://doi.org/10.1109/52.895175
Billc Hardgrave, Fred D Davis, and Cynthia K Riemenschneider. 2003. Inves-
tigating Determinants of Software Developers’ Intentions to Follow Method- [36
ologies. Journal of Management Information Systems 20, 1 (2003), 123-151.
https://doi.org/10.1080/07421222.2003.11045751
[15] James D. Herbsleb and Deependra Moitra. 2001. Global software development.
IEEE Software 18, 2 (2001), 16-20. https://doi.org/10.1109/52.914732 [37]
Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016.
Trials and tribulations of developers of intelligent systems: A field study. In 2016 [38]
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
Vol. 2016-Novem. IEEE, 162-170. https://doi.org/10.1109/VLHCC.2016.7739680 (39
Brittany Johnson, Thomas Zimmermann, and Christian Bird. 2021. The Effect
of Work Environments on Productivity and Satisfaction of Software Engineers.
IEEE Transactions on Software Engineering 47, 4 (apr 2021), 736-757. https:
//doi.org/10.1109/TSE.2019.2903053
Arif Ali Khan, Sher Badshah, Peng Liang, Muhammad Waseem, Bilal Khan, [40
Aakash Ahmad, Mahdi Fahmideh, Mahmood Niazi, and Muhammad Azeem
Akbar. 2022. Ethics of AI: A Systematic Literature Review of Principles and
Challenges. The International Conference on Evaluation and Assessment in Software [41
Engineering 2022, 383-392. https://doi.org/10.1145/3530019.3531329
[19] Jian Li and Jin Song Huang. 2020. Dimensions of artificial intelligence anxiety
based on the integrated fear acquisition theory. Technology in Society 63 (2020), [42
101410. https://doi.org/10.1016/j.techsoc.2020.101410
[20] Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmstrom Olsson,
and Ivica Crnkovic. 2019. A Taxonomy of Software Engineering Challenges [43
for Machine Learning Systems: An Empirical Investigation. In Agile Processes
in Software Engineering and Extreme Programming, Philippe Kruchten, Steven
Fraser, and Francois Coallier (Eds.). Springer International Publishing, Cham, [44]
227-243.
[21] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-Rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (nov
2019), 23 pages. https://doi.org/10.1145/3359174 [45
[22] Jorge Melegati and Xiaofeng Wang. 2021. Surfacing Paradigms underneath Re-
search on Human and Social Aspects of Software Engineering. In 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE). IEEE, 41-50. https://doi.org/10.1109/CHASE52884.2021.00013 [46
[23] Daniel Méndez Fernandez and Jan-Hendrik Passoth. 2019. Empirical software
engineering: From discipline to interdiscipline. Journal of Systems and Software
148 (feb 2019), 170-179. https://doi.org/10.1016/j.jss.2018.11.019 arXiv:1805.08302

[14

(16

(17

[18

CHASE °24, April 14-15, 2024, Lisbon, Portugal

org/10.1177/0038038519880114
Cynthia K. Riemenschneider, Bill C. Hardgrave, and Fred D. Davis. 2002. Ex-

plaining software developer acceptance of methodologies: A comparison of five
theoretical models. IEEE Transactions on Software Engineering 28, 12 (2002),
1135-1145. https://doi.org/10.1109/TSE.2002.1158287

Sue Robinson and Andrew L. Mendelson. 2012. A Qualitative Experiment: Re-
search on Mediated Meaning Construction Using a Hybrid Approach. Journal
of Mixed Methods Research 6, 4 (oct 2012), 332-347. https://doi.org/10.1177/
1558689812444789

Sharon Ryan and Rory V. O’Connor. 2013. Acquiring and sharing tacit knowledge
in software development teams: An empirical study. Information and Software
Technology 55, 9 (sep 2013), 1614-1624. https://doi.org/10.1016/j.infsof.2013.02.
013

Ken Schwaber and Jeff Sutherland. 2012. The Scrum Guide. https://api.
semanticscholar.org/CorpusID:114128971

Neil Selwyn, Luci Pangrazio, Selena Nemorin, and Carlo Perrotta. 2020. What
might the school of 2030 be like? An exercise in social science fiction. Learning,
Media and Technology 45, 1 (2020), 90-106. https://doi.org/10.1080/17439884.
2020.1694944

Gaurav G. Sharma and Klaas-Jan Stol. 2020. Exploring onboarding success,
organizational fit, and turnover intention of software professionals. Journal of
Systems and Software 159 (jan 2020), 110442. https://doi.org/10.1016/j.jss.2019.
110442

Mary Shaw. 1990. Prospects for an engineering discipline of software. IEEE
Software 7, 6 (nov 1990), 15-24. https://doi.org/10.1109/52.60586

Mary Shaw. 2009. Continuing prospects for an engineering discipline of software.
IEEE Software 26, 6 (2009), 64-67. https://doi.org/10.1109/MS.2009.172

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode compose: code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, New York, NY, USA, 1433-1443.
https://doi.org/10.1145/3368089.3417058 arXiv:2005.08025

Michael Szollosy. 2017. Freud, Frankenstein and our fear of robots: projection
in our cultural perception of technology. Al and Society 32, 3 (2017), 433-439.
https://doi.org/10.1007/s00146-016-0654-7

Ville Vakkuri, Kai-Kristian Kemell, Joni Kultanen, and Pekka Abrahamsson. 2020.
The Current State of Industrial Practice in Artificial Intelligence Ethics. IEEE
Software 37, 4 (jul 2020), 50-57. https://doi.org/10.1109/MS.2020.2985621
Venkatesh, Morris, Davis, and Davis. 2003. User Acceptance of Information
Technology: Toward a Unified View. MIS Quarterly 27, 3 (2003), 425. https:
//doi.org/10.2307/30036540

Viswanath Venkatesh and Fred D. Davis. 2000. A Theoretical Extension of the
Technology Acceptance Model: Four Longitudinal Field Studies. Management
Science 46, 2 (feb 2000), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Jess Whittlestone, Rune Nyrup, Anna Alexandrova, and Stephen Cave. 2019.
The Role and Limits of Principles in AI Ethics: Towards a Focus on Tensions. In
Proceedings of the 2019 AAAI/ACM Conference on Al Ethics, and Society (Honolulu,
HI, USA) (AIES ’19). Association for Computing Machinery, New York, NY, USA,
195-200. https://doi.org/10.1145/3306618.3314289

Claes Wohlin, Per Runeson, Martin Hést, Magnus C. Ohlsson, Bjérn Regnell, and
Anders Wesslén. 2012. Planning. In Experimentation in Software Engineering.
Vol. 9783642290. Springer Berlin Heidelberg, Berlin, Heidelberg, 89-116. https:
//doi.org/10.1007/978-3-642-29044-2_8

Kareshna Zamani, Didar Zowghi, and Chetan Arora. 2021. Machine Learning
in Requirements Engineering: A Mapping Study. In 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW). 116-125. https://doi.
org/10.1109/REW53955.2021.00023

[24] Sharan B Merriam and Elizabeth J Tisdell. 2015. Qualitative research: A guide to
design and implementation. John Wiley & Sons.
[25] Andre N. Meyer, Earl T. Barr, Christian Bird, and Thomas Zimmermann. 2021. A QUESTION NAIRES
Today Was a GOQd Da.y: The Daily Life of Software DeveloPers. IEEE Transactions Below, we present the questionnaires applied during the qualitative
on Software Engineering 47, 5 (2021), 863-880. https://doi.org/10.1109/TSE.2019. N
2904957 experiment. First, the pre-experiment questionnaire, answered by

[26] N. Montfort. 2017. The Future. MIT Press. all
[27] Nicole Novielli and Alexander Serebrenik. 2019. Sentiment and Emotion in
Software Engineering. IEEE Software 36, 5 (sep 2019), 6-23. https://doi.org/10.
1109/MS.2019.2924013

Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Marcio
Ribeiro, and Alessandro Garcia. 2019. Revisiting the refactoring mechanics.
Information and Software Technology 110, November 2018 (2019), 136-138. https:
//doi.org/10.1016/j.infsof.2019.03.002

Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering
Research and Software Metrics. In Proceedings of the 22nd International Conference
on Evaluation and Assessment in Software Engineering 2018, Vol. Part F1377. ACM,
New York, NY, USA, 13-23. https://doi.org/10.1145/3210459.3210461

Tom Redshaw. 2020. What Is Digital Society? Reflections on the Aims and
Purpose of Digital Sociology. Sociology 54, 2 (apr 2020), 425-431. https://doi.

[28

[29

[30

participants, is as follows:

(1) What is your participant ID?

(2) In your opinion, what does it mean to be a software devel-
oper?

(3) What is your perception regarding your own programming
skills? For example, do you consider yourself to be a good
programmer? etc.

(4) What is your experience with generative Al based software
engineering tools? For example, Github Copilot. Do you use
them in your daily routine? If so, which ones?

https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1145/3412841.3442029
https://doi.org/10.1145/3412841.3442029
http://www.jstor.org/stable/4241163
http://www.jstor.org/stable/4241163
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1109/52.895175
https://doi.org/10.1080/07421222.2003.11045751
https://doi.org/10.1109/52.914732
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1109/TSE.2019.2903053
https://doi.org/10.1109/TSE.2019.2903053
https://doi.org/10.1145/3530019.3531329
https://doi.org/10.1016/j.techsoc.2020.101410
https://doi.org/10.1145/3359174
https://doi.org/10.1109/CHASE52884.2021.00013
https://doi.org/10.1016/j.jss.2018.11.019
https://arxiv.org/abs/1805.08302
https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/MS.2019.2924013
https://doi.org/10.1109/MS.2019.2924013
https://doi.org/10.1016/j.infsof.2019.03.002
https://doi.org/10.1016/j.infsof.2019.03.002
https://doi.org/10.1145/3210459.3210461
https://doi.org/10.1177/0038038519880114
https://doi.org/10.1177/0038038519880114
https://doi.org/10.1109/TSE.2002.1158287
https://doi.org/10.1177/1558689812444789
https://doi.org/10.1177/1558689812444789
https://doi.org/10.1016/j.infsof.2013.02.013
https://doi.org/10.1016/j.infsof.2013.02.013
https://api.semanticscholar.org/CorpusID:114128971
https://api.semanticscholar.org/CorpusID:114128971
https://doi.org/10.1080/17439884.2020.1694944
https://doi.org/10.1080/17439884.2020.1694944
https://doi.org/10.1016/j.jss.2019.110442
https://doi.org/10.1016/j.jss.2019.110442
https://doi.org/10.1109/52.60586
https://doi.org/10.1109/MS.2009.172
https://doi.org/10.1145/3368089.3417058
https://arxiv.org/abs/2005.08025
https://doi.org/10.1007/s00146-016-0654-7
https://doi.org/10.1109/MS.2020.2985621
https://doi.org/10.2307/30036540
https://doi.org/10.2307/30036540
https://doi.org/10.1287/mnsc.46.2.186.11926
https://doi.org/10.1145/3306618.3314289
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1007/978-3-642-29044-2_8
https://doi.org/10.1109/REW53955.2021.00023
https://doi.org/10.1109/REW53955.2021.00023

CHASE 24, April 14-15, 2024, Lisbon, Portugal

(5) What is your opinion of generative Al based software engi-

neering tools? For example, Github Copilot.

Below, we presented the two forms applied after the experiment.
First, the questionnaire answered by the participants who were
assigned to the control.

(1) What is your participant ID?

(2) How difficult was the problem and why?

(3) Has the experiment altered your perception of what it means

to be a software developer?

Finally, the questionnaire below was answered by all the partici-
pants who had used the tool.

Melegati et al.

(1) What is your participant ID?

(2) How difficult was the problem and why?

(3) What was your impression of the generative Al-based tools
you have used?

(4) How did you feel once you had to stop (or begin) using the
generative Al-based tool?

(5) Did you feel dependent on the tool?

(6) Have your opinions on generative Al-based tools changed
after the experiment? If so, how?

(7) Has the experiment altered your perception of what it means
to be a software developer?

	Abstract
	1 Introduction
	2 Background and related work
	3 A social science fiction exercise
	3.1 Procedure
	3.2 Stories
	3.3 Potential issues

	4 A qualitative experiment
	4.1 Participants
	4.2 Pre-test
	4.3 Stimulus
	4.4 Post-test
	4.5 Pilot
	4.6 Execution details
	4.7 Data analysis
	4.8 Replication package

	5 Results
	5.1 Developers' perceptions about the tool
	5.2 Comparison by groups

	6 Discussion
	6.1 Implications for research and practice
	6.2 Threats to validity

	7 Conclusions
	Acknowledgments
	References
	A Questionnaires

